Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1989, Volume 64, Issue 1, Pages 1–21
DOI: https://doi.org/10.1070/SM1989v064n01ABEH003291
(Mi sm1725)
 

This article is cited in 12 scientific papers (total in 12 papers)

Estimates of rearrangements and imbedding theorems

V. I. Kolyada
References:
Abstract: The modulus of continuity of a function fLp(IN) (1p<, I=[0,1]), 1-periodic in each variable is defined by
ωp(f;δ)=sup
The following estimate is established for the nonincreasing rearrangement of a function f\in L^p(I^N) (p,N\geqslant1; \Delta A_n=A_{n+1}-A_n):
\begin{equation} \sum^\infty_{n=s}2^{-nN}(\Delta f^*(2^{-nN}))^p +2^{-sp}\sum_{n=1}^s2^{n(p-N)}(\Delta f^*(2^{-nN}))^p\leqslant c\omega_p^p(f;2^{-s}). \end{equation}
Also, analytic functions of Hardy class H^p in the unit disk are considered. It is proved that the inequality (1) (N=1) holds for the rearrangements of their boundary values also when 0<p<1 (this is false for real functions of class L^p).
Inequality (1) is used to find necessary and sufficient conditions for the space H^\omega_{p,N} (1\leqslant p<N) of functions with a given majorant of the L^p-modulus of continuity to be imbedded in the Orlicz classes \varphi(L), where \varphi satisfies the \Delta_2-condition and \varphi(t)t^{-p}\uparrow on (0,\infty). For p\geqslant N the solution of this problem follows from estimates obtained earlier by the author (RZh.Mat., 1975, 8B 62).
An analogous result is established for classes of functions in the Hardy space H^p (0<p<1).
The imbeddings with limiting exponent (Sobolev and Hardy–Littlewood theorems) are limiting cases of the results in this article.
Bibliography: 27 titles.
Received: 04.09.1987
Bibliographic databases:
UDC: 517.5
MSC: Primary 46E35, 46E30; Secondary 26A15, 26A16, 30D55
Language: English
Original paper language: Russian
Citation: V. I. Kolyada, “Estimates of rearrangements and imbedding theorems”, Math. USSR-Sb., 64:1 (1989), 1–21
Citation in format AMSBIB
\Bibitem{Kol88}
\by V.~I.~Kolyada
\paper Estimates of rearrangements and imbedding theorems
\jour Math. USSR-Sb.
\yr 1989
\vol 64
\issue 1
\pages 1--21
\mathnet{http://mi.mathnet.ru/eng/sm1725}
\crossref{https://doi.org/10.1070/SM1989v064n01ABEH003291}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=945897}
\zmath{https://zbmath.org/?q=an:0693.46030}
Linking options:
  • https://www.mathnet.ru/eng/sm1725
  • https://doi.org/10.1070/SM1989v064n01ABEH003291
  • https://www.mathnet.ru/eng/sm/v178/i1/p3
  • This publication is cited in the following 12 articles:
    1. Óscar Domínguez, Sergey Tikhonov, “New estimates for the maximal functions and applications”, Trans. Amer. Math. Soc., 375:6 (2022), 3969  crossref
    2. E. D. Kosov, “Besov classes on finite and infinite dimensional spaces”, Sb. Math., 210:5 (2019), 663–692  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. E. D. Kosov, “A characterization of Besov classes in terms of a new modulus of continuity”, Dokl. Math., 96:3 (2017), 587  crossref
    4. O. V. Besov, “Embeddings of Sobolev spaces in the case of the limit exponent”, Dokl. Math, 91:3 (2015), 277  mathnet  crossref  mathscinet  zmath
    5. O. V. Besov, “Embedding of Sobolev Space in the Case of the Limit Exponent”, Math. Notes, 98:4 (2015), 550–560  mathnet  crossref  crossref  mathscinet  isi  elib
    6. Norisuke Ioku, Michinori Ishiwata, “On a variational problem associated with a Hardy type inequality involving a mean oscillation”, Calc. Var., 54:4 (2015), 3949  crossref
    7. Ioku N., “Sharp Sobolev Inequalities in Lorentz Spaces for a Mean Oscillation”, J. Funct. Anal., 266:5 (2014), 2944–2958  crossref  mathscinet  zmath  isi
    8. Amiran Gogatishvili, Luboš Pick, Jan Schneider, “Characterization of a rearrangement-invariant hull of a Besov space via interpolation”, Rev Mat Complut, 2011  crossref  mathscinet
    9. Luboš Pick, International Mathematical Series, 13, Around the Research of Vladimir Maz'ya III, 2010, 279  crossref
    10. Lazaro, FJP, “A note on extreme cases of Sobolev embeddings”, Journal of Mathematical Analysis and Applications, 320:2 (2006), 973  crossref  mathscinet  zmath  isi
    11. A. M. Stokolos, “Differentiation of integrals by bases without the density property”, Sb. Math., 187:7 (1996), 1061–1085  mathnet  crossref  crossref  mathscinet  zmath  isi
    12. V. I. Kolyada, “Rearrangements of functions and embedding theorems”, Russian Math. Surveys, 44:5 (1989), 73–117  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:611
    Russian version PDF:196
    English version PDF:43
    References:86
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025