Abstract:
A uniform estimate is obtained for two-dimensional oscillating integrals with polynomial phase in terms of certain invariants of subgroups of affine groups.
Bibliography: 22 titles.
This publication is cited in the following 9 articles:
Akbar R. Safarov, Ulugbek A. Ibragimov, “Oscillatory integrals for Mittag–Leffler functions”, Zhurn. SFU. Ser. Matem. i fiz., 17:4 (2024), 488–496
Isroil A. Ikromov, Michael Ruzhansky, Akbar R. Safarov, “Oscillatory integrals for Mittag-Leffler functions with two variables”, Comptes Rendus. Mathématique, 362:G7 (2024), 789
Michael Ruzhansky, Akbar R. Safarov, Gafurjan A. Khasanov, “Uniform estimates for oscillatory integrals with homogeneous polynomial phases of degree 4”, Anal.Math.Phys., 12:6 (2022)
A. R. Safarov, “On the Lp-Bound for Trigonometric Integrals”, Anal Math, 45:1 (2019), 153
A. R. Safarov, “Invariant Estimates of Two-Dimensional Oscillatory Integrals”, Math. Notes, 104:2 (2018), 293–302
Akbar R. Safarov, “On invariant estimates for oscillatory integrals with polynomial phase”, Zhurn. SFU. Ser. Matem. i fiz., 9:1 (2016), 102–107
I. A. Ikromov, “Summability of Oscillatory Integrals over Parameters and the Boundedness Problem for Fourier Transforms on Curves”, Math. Notes, 87:5 (2010), 700–719
D. A. Popov, “Estimates with constants for some classes of oscillatory integrals”, Russian Math. Surveys, 52:1 (1997), 73–145
I. A. Ikromov, “Estimates for the Fourier Transform of the Indicator Function for Nonconvex Domains”, Funct. Anal. Appl., 29:3 (1995), 161–167