Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1990, Volume 67, Issue 2, Pages 473–488
DOI: https://doi.org/10.1070/SM1990v067n02ABEH001193
(Mi sm1647)
 

This article is cited in 9 scientific papers (total in 9 papers)

Invariant estimates of two-dimensional trigonometric integrals

I. A. Ikromov
References:
Abstract: A uniform estimate is obtained for two-dimensional oscillating integrals with polynomial phase in terms of certain invariants of subgroups of affine groups.
Bibliography: 22 titles.
Received: 14.03.1988
Bibliographic databases:
UDC: 517.518.5
MSC: Primary 42A05; Secondary 41A17
Language: English
Original paper language: Russian
Citation: I. A. Ikromov, “Invariant estimates of two-dimensional trigonometric integrals”, Math. USSR-Sb., 67:2 (1990), 473–488
Citation in format AMSBIB
\Bibitem{Ikr89}
\by I.~A.~Ikromov
\paper Invariant estimates of two-dimensional trigonometric integrals
\jour Math. USSR-Sb.
\yr 1990
\vol 67
\issue 2
\pages 473--488
\mathnet{http://mi.mathnet.ru/eng/sm1647}
\crossref{https://doi.org/10.1070/SM1990v067n02ABEH001193}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1019479}
\zmath{https://zbmath.org/?q=an:0703.42007}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990EN23400009}
Linking options:
  • https://www.mathnet.ru/eng/sm1647
  • https://doi.org/10.1070/SM1990v067n02ABEH001193
  • https://www.mathnet.ru/eng/sm/v180/i8/p1017
  • This publication is cited in the following 9 articles:
    1. Akbar R. Safarov, Ulugbek A. Ibragimov, “Oscillatory integrals for Mittag–Leffler functions”, Zhurn. SFU. Ser. Matem. i fiz., 17:4 (2024), 488–496  mathnet
    2. Isroil A. Ikromov, Michael Ruzhansky, Akbar R. Safarov, “Oscillatory integrals for Mittag-Leffler functions with two variables”, Comptes Rendus. Mathématique, 362:G7 (2024), 789  crossref
    3. Michael Ruzhansky, Akbar R. Safarov, Gafurjan A. Khasanov, “Uniform estimates for oscillatory integrals with homogeneous polynomial phases of degree 4”, Anal.Math.Phys., 12:6 (2022)  crossref
    4. A. R. Safarov, “On the Lp-Bound for Trigonometric Integrals”, Anal Math, 45:1 (2019), 153  crossref
    5. A. R. Safarov, “Invariant Estimates of Two-Dimensional Oscillatory Integrals”, Math. Notes, 104:2 (2018), 293–302  mathnet  crossref  crossref  mathscinet  isi  elib
    6. Akbar R. Safarov, “On invariant estimates for oscillatory integrals with polynomial phase”, Zhurn. SFU. Ser. Matem. i fiz., 9:1 (2016), 102–107  mathnet  crossref
    7. I. A. Ikromov, “Summability of Oscillatory Integrals over Parameters and the Boundedness Problem for Fourier Transforms on Curves”, Math. Notes, 87:5 (2010), 700–719  mathnet  crossref  crossref  mathscinet  isi  elib
    8. D. A. Popov, “Estimates with constants for some classes of oscillatory integrals”, Russian Math. Surveys, 52:1 (1997), 73–145  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    9. I. A. Ikromov, “Estimates for the Fourier Transform of the Indicator Function for Nonconvex Domains”, Funct. Anal. Appl., 29:3 (1995), 161–167  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:334
    Russian version PDF:144
    English version PDF:17
    References:49
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025