Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2007, Volume 198, Issue 3, Pages 383–424
DOI: https://doi.org/10.1070/SM2007v198n03ABEH003841
(Mi sm1484)
 

This article is cited in 14 scientific papers (total in 15 papers)

Fractional monodromy in the case of arbitrary resonances

N. N. Nekhoroshevab

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b University of Milan
References:
Abstract: The existence of fractional monodromy is proved for the compact Lagrangian fibration on a symplectic 4-manifold that corresponds to two oscillators with arbitrary non-trivial resonant frequencies. Here one means by the monodromy corresponding to a loop in the total space of the fibration the transformation of the fundamental group of a regular fibre, which is diffeomorphic to the 2-torus. In the example under consideration the fibration is defined by a pair of functions in involution, one of which is the Hamiltonian of the system of two oscillators with frequency ratio m1:(m2), where m1, m2 are arbitrary coprime positive integers distinct from the trivial pair m1=m2=1. This is a generalization of the result on the existence of fractional monodromy in the case m1=1, m2=2 published before.
Bibliography: 39 titles.
Received: 22.12.2005
Bibliographic databases:
UDC: 514.7+517.925
MSC: 37J35, 58K10
Language: English
Original paper language: Russian
Citation: N. N. Nekhoroshev, “Fractional monodromy in the case of arbitrary resonances”, Sb. Math., 198:3 (2007), 383–424
Citation in format AMSBIB
\Bibitem{Nek07}
\by N.~N.~Nekhoroshev
\paper Fractional monodromy in the case of arbitrary
resonances
\jour Sb. Math.
\yr 2007
\vol 198
\issue 3
\pages 383--424
\mathnet{http://mi.mathnet.ru/eng/sm1484}
\crossref{https://doi.org/10.1070/SM2007v198n03ABEH003841}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2354281}
\zmath{https://zbmath.org/?q=an:1147.53063}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000247946700004}
\elib{https://elibrary.ru/item.asp?id=9469182}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547839545}
Linking options:
  • https://www.mathnet.ru/eng/sm1484
  • https://doi.org/10.1070/SM2007v198n03ABEH003841
  • https://www.mathnet.ru/eng/sm/v198/i3/p91
  • This publication is cited in the following 15 articles:
    1. Reshetikhin N., “Semiclassical Geometry of Integrable Systems”, J. Phys. A-Math. Theor., 51:16 (2018), 164001  crossref  mathscinet  zmath  isi  scopus
    2. N. A. Tyurin, “Pseudotoric structures: Lagrangian submanifolds and Lagrangian fibrations”, Russian Math. Surveys, 72:3 (2017), 513–546  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Martynchuk N. Efstathiou K., “Parallel Transport Along Seifert Manifolds and Fractional Monodromy”, Commun. Math. Phys., 356:2 (2017), 427–449  crossref  mathscinet  zmath  isi  scopus
    4. Dmitrií A. Sadovskií, “Nekhoroshev’s Approach to Hamiltonian Monodromy”, Regul. Chaotic Dyn., 21:6 (2016), 720–758  mathnet  crossref  mathscinet
    5. N. N. Nekhoroshev, “Monodromiya sloya s ostsillyatornoi osoboi tochkoi tipa $1:(-2)$”, Nelineinaya dinam., 12:3 (2016), 413–541  mathnet  crossref  elib
    6. K. Efstathiou, H. W. Broer, “Uncovering Fractional Monodromy”, Commun. Math. Phys, 324:2 (2013), 549  crossref  mathscinet  zmath  isi  elib  scopus
    7. D. I. Tonkonog, “A simple proof of the “geometric fractional monodromy theorem””, Moscow University Mathematics Bulletin, 68:2 (2013), 118–121  mathnet  crossref  mathscinet
    8. Efstathiou K., Sugny D., “Integrable Hamiltonian systems with swallowtails”, J. Phys. A, 43:8 (2010), 085216, 25 pp.  crossref  mathscinet  zmath  adsnasa  isi
    9. Efstathiou K., Sadovskií D., “Normalization and global analysis of perturbations of the hydrogen atom”, Rev. Mod. Phys., 82:3 (2010), 2099–2154  crossref  adsnasa  isi  elib  scopus
    10. Lukina O., Efstathiou K., Lukina O., “A geometric fractional monodromy theorem”, Discrete Contin. Dyn. Syst. Ser. S, 3:4 (2010), 517–532  crossref  mathscinet  zmath  elib  scopus
    11. Schmidt S., Dullin H.R., “Dynamics near the $p{:}-q$ resonance”, Phys. D, 239:19 (2010), 1884–1891  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    12. A. M. Abramov, V. I. Arnol'd, A. V. Bolsinov, A. N. Varchenko, L. Galgani, B. I. Zhilinskii, Yu. S. Il'yashenko, V. V. Kozlov, A. I. Neishtadt, V. I. Piterbarg, A. G. Khovanskii, V. V. Yashchenko, “Nikolai Nikolaevich Nekhoroshev (obituary)”, Russian Math. Surveys, 64:3 (2009), 561–566  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. Sugny D., Mardešić P., Pelletier M., Jebrane A., Jauslin H.R., “Fractional Hamiltonian monodromy from a Gauss–Manin monodromy”, J. Math. Phys., 49:4 (2008), 042701, 35 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    14. Nekhoroshev N., “Fuzzy fractional monodromy and the section-hyperboloid”, Milan J. Math., 76:1 (2008), 1–14  crossref  mathscinet  zmath  isi  elib  scopus
    15. Giacobbe A., “Infinitesimally stable and unstable singularities of 2-degrees of freedom completely integrable systems”, Reg. Chaot. Dyn., 12:6 (2007), 717–731  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:732
    Russian version PDF:192
    English version PDF:36
    References:101
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025