Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2005, Volume 196, Issue 12, Pages 1745–1799
DOI: https://doi.org/10.1070/SM2005v196n12ABEH003739
(Mi sm1442)
 

This article is cited in 15 scientific papers (total in 15 papers)

Stabilization rate and stability for viscous compressible barotropic symmetric flows with free boundary for a general mass force

A. A. Zlotnika, B. Ducometb

a Moscow Power Engineering Institute (Technical University)
b CEA/DAM Ile de France, Département de Physique Théorique et Appliquée
References:
Abstract: We consider symmetric flows of a viscous compressible barotropic fluid with free boundary driven by a general mass force $f_S$ (depending on both the Eulerian and the Lagrangian coordinates) and an outer pressure $p_{\Gamma,S}$, for a general monotone state function $p$. The case of self-gravitation arising in astrophysics is covered. Studied first are the existence, the uniqueness, and the static stability of positive stationary solutions; a variational study of these solutions and their static stability in terms of potential energy is presented. In the astrophysical context it is proved that the stationary solution is unique and statically stable, provided that the first adiabatic exponent is at least 4/3.
Next, in the case when the $\omega$-limit set for the non-stationary density and free boundary contains a statically stable positive stationary solution a uniform stabilization to this solution is deduced and, as the main result, stabilization-rate bounds of exponential type as $t\to\infty$ in $L^2$ and $H^1$ for the density and the velocity are established by constructing new non-trivial Lyapunov functionals for the problem. Moreover, it is proved that statically stable stationary solutions are exponentially asymptotically stable, and this non-linear dynamic stability is in addition stable with respect to small non-stationary perturbations of $f_S$ and $p_{\Gamma,S}$. A variational condition for the stationary solution is also introduced, which ensures global (with respect to the data) dynamic stability. The study is accomplished in the Eulerian coordinates and in the Lagrangian mass coordinates alike.
Received: 25.06.2004 and 25.04.2005
Bibliographic databases:
UDC: 517.958+531.32
Language: English
Original paper language: Russian
Citation: A. A. Zlotnik, B. Ducomet, “Stabilization rate and stability for viscous compressible barotropic symmetric flows with free boundary for a general mass force”, Sb. Math., 196:12 (2005), 1745–1799
Citation in format AMSBIB
\Bibitem{ZloDuc05}
\by A.~A.~Zlotnik, B.~Ducomet
\paper Stabilization rate and stability for viscous compressible barotropic symmetric flows with free boundary for a~general mass force
\jour Sb. Math.
\yr 2005
\vol 196
\issue 12
\pages 1745--1799
\mathnet{http://mi.mathnet.ru/eng/sm1442}
\crossref{https://doi.org/10.1070/SM2005v196n12ABEH003739}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2225206}
\zmath{https://zbmath.org/?q=an:1151.35432}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000235973300009}
\elib{https://elibrary.ru/item.asp?id=9154708}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645143821}
Linking options:
  • https://www.mathnet.ru/eng/sm1442
  • https://doi.org/10.1070/SM2005v196n12ABEH003739
  • https://www.mathnet.ru/eng/sm/v196/i12/p33
  • This publication is cited in the following 15 articles:
    1. A. E. Mamontov, D. A. Prokudin, “Asimptoticheskoe povedenie resheniya nachalno-kraevoi zadachi odnomernogo dvizheniya vyazkoi barotropnoi mnogokomponentnoi smesi”, Sib. elektron. matem. izv., 20:2 (2023), 1490–1498  mathnet  crossref
    2. D.A. Prokudin, “Stabilization of the Solution to the Initial-Boundary Value Problem for One-Dimensional Isothermal Equations of Viscous Compressible Multicomponent Media”, Izvestiya AltGU, 2023, no. 4(132), 73  crossref
    3. Dmitriy Prokudin, “On the Stabilization of the Solution to the Initial Boundary Value Problem for One-Dimensional Isothermal Equations of Viscous Compressible Multicomponent Media Dynamics”, Mathematics, 11:14 (2023), 3065  crossref
    4. D. A. Prokudin, “O stabilizatsii resheniya nachalno-kraevoi zadachi dlya uravnenii dinamiki vyazkikh szhimaemykh mnogokomponentnykh sred”, Sib. elektron. matem. izv., 18:2 (2021), 1278–1285  mathnet  crossref
    5. Hong G., Wen H., Zhu Ch., “Large-Time Behavior of the Spherically Symmetric Compressible Navier-Stokes Equations With Degenerate Viscosity Coefficients”, Z. Angew. Math. Phys., 70:2 (2019), 59  crossref  mathscinet  zmath  isi  scopus
    6. Song Jiang, Qiangchang Ju, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2018, 1711  crossref
    7. Song Jiang, Qiangchang Ju, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2016, 1  crossref
    8. Qin Duan, Hai-Liang Li, “Global existence of weak solution for the compressible Navier–Stokes–Poisson system for gaseous stars”, Journal of Differential Equations, 2015  crossref  mathscinet
    9. Duan Q., “Local Strong Solution of Navier–Stokes-Poisson Equations With Degenerated Viscosity Coefficient”, Math. Meth. Appl. Sci., 38:17 (2015), 4154–4177  crossref  mathscinet  zmath  isi  scopus
    10. Duan Q., “On the Dynamics of Navier–Stokes Equations for a Spherically Symmetric Shallow Water Model”, J. Math. Anal. Appl., 404:2 (2013), 260–282  crossref  mathscinet  zmath  isi
    11. Zhenhua Guo, Hai-Liang Li, Zhouping Xin, “Lagrange Structure and Dynamics for Solutions to the Spherically Symmetric Compressible Navier–Stokes Equations”, Commun. Math. Phys, 2011  crossref  mathscinet  isi
    12. Zhang Ting, Fang Daoyuan, “Global behavior of spherically symmetric Navier–Stokes-Poisson system with degenerate viscosity coefficients”, Arch. Ration. Mech. Anal., 191:2 (2009), 195–243  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    13. Wei Mingjun, Zhang Ting, Fang Daoyuan, “Global Behavior of Spherically Symmetric Navier–Stokes Equations with Degenerate Viscosity Coefficients”, SIAM J. Math. Anal., 40:3 (2008), 869–904  crossref  mathscinet  zmath  isi  elib
    14. Alexander Zlotnik, International Mathematical Series, 7, Instability in Models Connected with Fluid Flows II, 2008, 329  crossref
    15. Zhang Ting, Fang Daoyuan, “Global behavior of spherically symmetric Navier–Stokes equations with density-dependent viscosity”, J. Differential Equations, 236:1 (2007), 293–341  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:620
    Russian version PDF:249
    English version PDF:36
    References:99
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025