Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1996, Volume 187, Issue 5, Pages 735–744
DOI: https://doi.org/10.1070/SM1996v187n05ABEH000130
(Mi sm130)
 

This article is cited in 12 scientific papers (total in 12 papers)

A problem of Mahler on the zeros of a polynomial and its derivative

È. A. Storozhenko

I. I. Mechnikov Odessa National University
References:
Abstract: Mahler has obtained an inequality for the products of zeros of an algebraic polynomial and its derivative lying outside the unit disc. In this paper a converse inequality with best possible constant is established.
Received: 12.10.1995
Bibliographic databases:
UDC: 517.518
MSC: 30C10, 30C15
Language: English
Original paper language: Russian
Citation: È. A. Storozhenko, “A problem of Mahler on the zeros of a polynomial and its derivative”, Sb. Math., 187:5 (1996), 735–744
Citation in format AMSBIB
\Bibitem{Sto96}
\by \`E.~A.~Storozhenko
\paper A problem of Mahler on the~zeros of a~polynomial and its derivative
\jour Sb. Math.
\yr 1996
\vol 187
\issue 5
\pages 735--744
\mathnet{http://mi.mathnet.ru/eng/sm130}
\crossref{https://doi.org/10.1070/SM1996v187n05ABEH000130}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1400355}
\zmath{https://zbmath.org/?q=an:0866.30009}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VK60300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030496801}
Linking options:
  • https://www.mathnet.ru/eng/sm130
  • https://doi.org/10.1070/SM1996v187n05ABEH000130
  • https://www.mathnet.ru/eng/sm/v187/i5/p111
  • This publication is cited in the following 12 articles:
    1. O'Rourke S., Williams N., “Pairing Between Zeros and Critical Points of Random Polynomials With Independent Roots”, Trans. Am. Math. Soc., 371:4 (2019), 2343–2381  crossref  mathscinet  zmath  isi  scopus
    2. Kovalenko L.G., Storozhenko E.A., “on the Fractional Integrodifferentiation of Complex Polynomials in l (0)”, Ukr. Math. J., 69:5 (2017), 823–830  crossref  mathscinet  zmath  isi  scopus
    3. Pritsker I.E., “Inequalities For Integral Norms of Polynomials Via Multipliers”, Progress in Approximation Theory and Applicable Complex Analysis: in Memory of Q.i. Rahman, Springer Optimization and Its Applications, 117, eds. Govil N., Mohapatra R., Qazi M., Schmeisser G., Springer, 2017, 83–103  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    4. Sean O'Rourke, “Critical Points of Random Polynomials and Characteristic Polynomials of Random Matrices”, Int Math Res Notices, 2016:18 (2016), 5616  crossref
    5. È. A. Storozhenko, L. G. Kovalenko, “Inequality for Fractional Integrals of Complex Polynomials in L0”, Math. Notes, 96:4 (2014), 609–612  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    6. Robin Pemantle, Igor Rivin, Advances in Combinatorics, 2013, 259  crossref
    7. Dubickas A., Jankauskas J, “On Mahler measures of a self-inversive polynomial and its derivative”, Bulletin of the London Mathematical Society, 42:Part 2 (2010), 195–209  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    8. Adamov, AN, “INEQUALITY OF THE TURAN TYPE FOR TRIGONOMETRIC POLYNOMIALS AND CONJUGATE TRIGONOMETRIC POLYNOMIALS IN L-0”, Ukrainian Mathematical Journal, 61:7 (2009), 1169  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    9. È. A. Storozhenko, “Turán-type inequalities for complex polynomials in the L0-metric”, Russian Math. (Iz. VUZ), 52:5 (2008), 88–94  mathnet  crossref  mathscinet  zmath
    10. Pritsker, IE, “AN AREAL ANALOG OF MAHLER'S MEASURE”, Illinois Journal of Mathematics, 52:2 (2008), 347  crossref  mathscinet  zmath  isi
    11. È. A. Storozhenko, “Nikol'skii-Stechkin inequality for trigonometric polynomials in L0”, Math. Notes, 80:3 (2006), 403–409  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    12. B. S. Kashin, N. P. Korneichuk, P. L. Ul'yanov, I. A. Shevchuk, V. A. Andrienko, “A brief survey of scientific results of E. A. Storozhenko”, Ukr Math J, 52:4 (2000), 531  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:583
    Russian version PDF:260
    English version PDF:47
    References:92
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025