Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1992, Volume 71, Issue 2, Pages 499–516
DOI: https://doi.org/10.1070/SM1992v071n02ABEH001407
(Mi sm1253)
 

This article is cited in 16 scientific papers (total in 16 papers)

Sets of values of systems of functionals in classes of univalent functions

D. V. Prokhorov

Saratov State University named after N. G. Chernyshevsky
References:
Abstract: The problem of describing the set of values of a system of functional {f(z),,f(n)(z)} in the class of univalent functions holomorphic in the disk is formalized as a problem of constructing the set of attainability for a control system generated by the Löwner equation. In this problem the maximum principle turns out to be a necessary and sufficient condition for optimality. An algorithm for finding this set for a generalized Loewner equation with constant coefficients and continuous control is constructed. The results are extended to classes of bounded univalent functions.
Received: 26.09.1989
Bibliographic databases:
UDC: 517.546.1+517.977.5
MSC: Primary 30C55, 34H05, 93B03; Secondary 30C45
Language: English
Original paper language: Russian
Citation: D. V. Prokhorov, “Sets of values of systems of functionals in classes of univalent functions”, Math. USSR-Sb., 71:2 (1992), 499–516
Citation in format AMSBIB
\Bibitem{Pro90}
\by D.~V.~Prokhorov
\paper Sets of values of systems of functionals in classes of univalent functions
\jour Math. USSR-Sb.
\yr 1992
\vol 71
\issue 2
\pages 499--516
\mathnet{http://mi.mathnet.ru/eng/sm1253}
\crossref{https://doi.org/10.1070/SM1992v071n02ABEH001407}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1099520}
\zmath{https://zbmath.org/?q=an:0776.30012|0717.30013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1992SbMat..71..499P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992HU58600015}
Linking options:
  • https://www.mathnet.ru/eng/sm1253
  • https://doi.org/10.1070/SM1992v071n02ABEH001407
  • https://www.mathnet.ru/eng/sm/v181/i12/p1659
  • This publication is cited in the following 16 articles:
    1. F. G. Avkhadiev, I. R. Kayumov, S. R. Nasyrov, “Extremal problems in geometric function theory”, Russian Math. Surveys, 78:2 (2023), 211–271  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. D. V. Prokhorov, “Value regions in classes of conformal mappings”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 19:3 (2019), 258–279  mathnet  crossref  elib
    3. A. V. Zherdev, “Value range of solutions to the chordal Loewner equation with restriction on the driving function”, Probl. anal. Issues Anal., 8(26):2 (2019), 92–104  mathnet  crossref  elib
    4. D. Prokhorov, “Qualitative Results in the Bombieri Problem for Conformal Mappings”, Lobachevskii J Math, 40:9 (2019), 1397  crossref
    5. Dmitri Prokhorov, “Necessary criteria for the Bombieri conjecture”, Anal.Math.Phys., 8:4 (2018), 679  crossref
    6. V. G. Gordienko, K. A. Samsonova, “Opredelenie granitsy v lokalnoi gipoteze Khazhinskogo–Tammi dlya pyatogo koeffitsienta”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 13:4(1) (2013), 5–14  mathnet  crossref
    7. D. V. Prokhorov, V. G. Gordienko, “Definition of a boundary in the local Charzyński-Tammi conjecture”, Russian Math. (Iz. VUZ), 52:9 (2008), 51–59  mathnet  crossref  mathscinet  zmath  elib
    8. D. V. Prokhorov, A. A. Nikulin, “Asymptotic estimates for the coefficients of bounded univalent functions”, Siberian Math. J., 47:5 (2006), 924–933  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    9. Dmitri Prokhorov, Alexander Vasil'ev, “Univalent Functions and Integrable Systems”, Commun. Math. Phys., 262:2 (2006), 393  crossref
    10. D.V. Prokhorov, “Extremal Bounded Slit Mappings for Linear Functionals”, Rocky Mountain J. Math., 33:3 (2003)  crossref
    11. D.V. Prokhorov, Handbook of Complex Analysis, 1, Geometric Function Theory, 2002, 207  crossref
    12. G. N. Kamyshova, “A variational method and optimal control in the solution of the Mocanu problem”, Russian Math. (Iz. VUZ), 42:8 (1998), 33–40  mathnet  mathscinet  zmath  elib
    13. I. R. Kayumov, “On an extremal problem in airfoil theory”, Russian Math. (Iz. VUZ), 42:11 (1998), 39–44  mathnet  mathscinet  zmath  elib
    14. D. V. Prokhorov, “The sum of coefficients of bounded univalent functions”, Math. Notes, 61:5 (1997), 609–613  mathnet  crossref  crossref  mathscinet  zmath  isi
    15. Dmitri Prokhorov, “Coefficients of Functions Close to the Identity Function”, Complex Variables, Theory and Application: An International Journal, 33:1-4 (1997), 255  crossref
    16. D. V. Prokhorov, “Coefficient products for bounded univalent functions”, Complex Variables, Theory and Application: An International Journal, 27:3 (1995), 211  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:510
    Russian version PDF:194
    English version PDF:26
    References:81
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025