Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1991, Volume 70, Issue 1, Pages 1–10
DOI: https://doi.org/10.1070/SM1991v070n01ABEH002117
(Mi sm1190)
 

This article is cited in 4 scientific papers (total in 5 papers)

The Pontryagin delay phenomenon and stable ducktrajectories for multidimensional relaxation systems with one slow variable

A. Yu. Kolesova, E. F. Mishchenkob

a P. G. Demidov Yaroslavl State University
b V. A. Steklov Mathematical Institute, USSR Academy of Sciences
References:
Abstract: It is assumed that the equilibrium state of the relaxation system
εx˙=f(x,y),y˙=g(x,y,μ),
where xRn and yR, passes generically through a point of discontinuity as μ varies. Under this condition stable duck cycles and cycles arising in a neighborhood of the equilibrium state are constructed.
Received: 17.11.1989
Bibliographic databases:
Document Type: Article
UDC: 517.926
MSC: Primary 34D15, 34C25; Secondary 34C45, 34E05, 34C20
Language: English
Original paper language: Russian
Citation: A. Yu. Kolesov, E. F. Mishchenko, “The Pontryagin delay phenomenon and stable ducktrajectories for multidimensional relaxation systems with one slow variable”, Math. USSR-Sb., 70:1 (1991), 1–10
Citation in format AMSBIB
\Bibitem{KolMis90}
\by A.~Yu.~Kolesov, E.~F.~Mishchenko
\paper The Pontryagin delay phenomenon and stable ducktrajectories for multidimensional relaxation systems with one slow variable
\jour Math. USSR-Sb.
\yr 1991
\vol 70
\issue 1
\pages 1--10
\mathnet{http://mi.mathnet.ru/eng/sm1190}
\crossref{https://doi.org/10.1070/SM1991v070n01ABEH002117}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1055975}
\zmath{https://zbmath.org/?q=an:0731.34028}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1991SbMat..70....1K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991GG78300001}
Linking options:
  • https://www.mathnet.ru/eng/sm1190
  • https://doi.org/10.1070/SM1991v070n01ABEH002117
  • https://www.mathnet.ru/eng/sm/v181/i5/p579
  • This publication is cited in the following 5 articles:
    1. Christian Kuehn, Applied Mathematical Sciences, 191, Multiple Time Scale Dynamics, 2015, 197  crossref
    2. N. A. Arzhanova, M. A. Prokaznikov, A. V. Prokaznikov, “Self-organization process under electrolytic formation of nanostructures in silicon-based semi-conducting systems”, Russ Microelectron, 43:6 (2014), 413  crossref
    3. D. V. Anosov, S. M. Aseev, R. V. Gamkrelidze, S. P. Konovalov, M. S. Nikol'skii, N. Kh. Rozov, “Evgenii Frolovich Mishchenko (on the 90th anniversary of his birth)”, Russian Math. Surveys, 67:2 (2012), 385–402  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. A. Yu. Kolesov, N. Kh. Rozov, “The “Buridan's Ass” problem in relaxation systems with one slow variable”, Math. Notes, 65:1 (1999), 128–131  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. Kolesov A. Rozov N., “Cycles-Ducks of Three-Dimensional Relaxation Systems with a Fast Variable and Two Slow Variables”, Differ. Equ., 32:2 (1996), 181–185  mathnet  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:474
    Russian version PDF:112
    English version PDF:36
    References:75
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025