Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 10, Pages 1529–1558
DOI: https://doi.org/10.1070/SM2006v197n10ABEH003811
(Mi sm1126)
 

This article is cited in 63 scientific papers (total in 63 papers)

Dyadic wavelets and refinable functions on a half-line

V. Yu. Protasova, Yu. A. Farkovb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow State Geological Prospecting Academy
References:
Abstract: For an arbitrary positive integer nn refinable functions on the positive half-line R+ are defined, with masks that are Walsh polynomials of order 2n1. The Strang-Fix conditions, the partition of unity property, the linear independence, the stability, and the orthonormality of integer translates of a solution of the corresponding refinement equations are studied. Necessary and sufficient conditions ensuring that these solutions generate multiresolution analysis in L2(R+) are deduced. This characterizes all systems of dyadic compactly supported wavelets on R+ and gives one an algorithm for the construction of such systems. A method for finding estimates for the exponents of regularity of refinable functions is presented, which leads to sharp estimates in the case of small n. In particular, all the dyadic entire compactly supported refinable functions on R+ are characterized. It is shown that a refinable function is either dyadic entire or has a finite exponent of regularity, which, moreover, has effective upper estimates.
Bibliography: 13 items.
Received: 08.08.2005 and 26.07.2006
Bibliographic databases:
UDC: 517.518.3+517.965
MSC: Primary 42C40; Secondary 43A70
Language: English
Original paper language: Russian
Citation: V. Yu. Protasov, Yu. A. Farkov, “Dyadic wavelets and refinable functions on a half-line”, Sb. Math., 197:10 (2006), 1529–1558
Citation in format AMSBIB
\Bibitem{ProFar06}
\by V.~Yu.~Protasov, Yu.~A.~Farkov
\paper Dyadic wavelets and refinable functions on~a~half-line
\jour Sb. Math.
\yr 2006
\vol 197
\issue 10
\pages 1529--1558
\mathnet{http://mi.mathnet.ru/eng/sm1126}
\crossref{https://doi.org/10.1070/SM2006v197n10ABEH003811}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2310119}
\zmath{https://zbmath.org/?q=an:05295405}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243495000015}
\elib{https://elibrary.ru/item.asp?id=9296534}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846537568}
Linking options:
  • https://www.mathnet.ru/eng/sm1126
  • https://doi.org/10.1070/SM2006v197n10ABEH003811
  • https://www.mathnet.ru/eng/sm/v197/i10/p129
  • This publication is cited in the following 63 articles:
    1. M. Skopina, “Tight wavelet frames on the space of M-positive vectors”, Anal. Appl., 22:05 (2024), 913  crossref
    2. Yu. A. Farkov, “Stupenchatye masshtabiruyuschie funktsii i sistema Krestensona”, Differentsialnye uravneniya i matematicheskaya fizika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 225, VINITI RAN, M., 2023, 134–149  mathnet  crossref
    3. M. A. Karapetyants, “O raspredelenii sluchainogo stepennogo ryada na diadicheskoi polupryamoi”, Sib. matem. zhurn., 64:6 (2023), 1186–1198  mathnet  crossref
    4. M. A. Karapetyants, “On the Distribution of a Random Power Series on the Dyadic Half-Line”, Sib Math J, 64:6 (2023), 1319  crossref
    5. Zhang Ya., Li Yu.-Zh., “Weak Nonhomogeneous Wavelet Dual Frames For Walsh Reducing Subspace of l-2 (R+)”, Int. J. Wavelets Multiresolut. Inf. Process., 20:01 (2022), 2150040  crossref  mathscinet  isi
    6. Yu. Farkov, M. Skopina, “Step wavelets on Vilenkin groups”, J Math Sci, 266:5 (2022), 696  crossref
    7. Yun-Zhang Li, Trends in Mathematics, Current Trends in Analysis, its Applications and Computation, 2022, 645  crossref
    8. Abdullah A., “Characterization of Non-Stationary Wavelets and Non-Stationary Multiresolution Analysis Wavelets Related to Walsh Functions”, Complex Anal. Oper. Theory, 15:5 (2021), 86  crossref  mathscinet  isi  scopus
    9. Biswaranjan Behera, Qaiser Jahan, Indian Statistical Institute Series, Wavelet Analysis on Local Fields of Positive Characteristic, 2021, 85  crossref
    10. M. A. Karapetyants, V. Yu. Protasov, “Spaces of Dyadic Distributions”, Funct. Anal. Appl., 54:4 (2020), 272–277  mathnet  crossref  crossref  isi  elib
    11. Berdnikov G.S., Lukomskii S.F., “Discrete Orthogonal and Riesz Refinable Functions on Local Fields of Positive Characteristic”, Eur. J. Math., 6:4 (2020), 1505–1522  crossref  mathscinet  isi
    12. M. S. Bespalov, M. S. Bespalov, “Extraction of Walsh Harmonics by Linear Combinations of Dyadic Shifts”, J Math Sci, 249:6 (2020), 838  crossref
    13. E. A. Lebedeva, “Approximation Properties of Systems of Periodic Wavelets on the Cantor Group”, J Math Sci, 244:4 (2020), 642  crossref
    14. G. S. Berdnikov, “Necessary and sufficient condition for an orthogonal scaling function on Vilenkin groups”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 19:1 (2019), 24–33  mathnet  crossref  elib
    15. Yu. A. Farkov, “Discrete wavelet transforms in Walsh analysis”, J. Math. Sci. (N. Y.), 257:1 (2021), 127–137  mathnet  crossref  mathscinet  zmath
    16. Farkov Yu.A., “Wavelet Frames Related to Walsh Functions”, Eur. J. Math., 5:1, SI (2019), 250–267  crossref  mathscinet  zmath  isi  scopus
    17. Zhang Ya., “Walsh Shift-Invariant Sequences and P-Adic Nonhomogeneous Dual Wavelet Frames in l-2 (R+)”, Results Math., 74:3 (2019), UNSP 111  crossref  mathscinet  isi  scopus
    18. Yu. A. Farkov, Pammy Manchanda, Abul Hasan Siddiqi, Industrial and Applied Mathematics, Construction of Wavelets Through Walsh Functions, 2019, 317  crossref
    19. E. J. King, M. A. Skopina, “On biorthogonal p-adic wavelet bases”, J. Math. Sci. (N. Y.), 234:2 (2018), 158–169  mathnet  crossref
    20. A. A. Lyubushin, Yu. A. Farkov, “Sinkhronnye komponenty finansovykh vremennykh ryadov”, Kompyuternye issledovaniya i modelirovanie, 9:4 (2017), 639–655  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1393
    Russian version PDF:576
    English version PDF:54
    References:92
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025