Abstract:
For an arbitrary positive integer nn refinable functions on the positive
half-line R+ are defined, with masks that are
Walsh polynomials of order 2n−1. The Strang-Fix conditions, the partition of unity property,
the linear independence, the stability, and the orthonormality of integer
translates of a solution of the corresponding refinement equations are
studied. Necessary and sufficient conditions ensuring that these solutions generate
multiresolution analysis in L2(R+) are deduced.
This characterizes all systems of dyadic compactly supported
wavelets on R+ and gives one an algorithm for the
construction of such systems.
A method for finding estimates for the exponents of
regularity of refinable functions is presented,
which leads to sharp estimates in the case of small n.
In particular, all the dyadic entire compactly supported refinable functions on R+
are characterized. It is shown that a refinable function is either
dyadic entire or has a finite exponent of regularity, which, moreover, has
effective upper estimates.
Bibliography: 13 items.
This publication is cited in the following 63 articles:
M. Skopina, “Tight wavelet frames on the space of M-positive vectors”, Anal. Appl., 22:05 (2024), 913
Yu. A. Farkov, “Stupenchatye masshtabiruyuschie funktsii i sistema Krestensona”, Differentsialnye uravneniya i matematicheskaya fizika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 225, VINITI RAN, M., 2023, 134–149
M. A. Karapetyants, “O raspredelenii sluchainogo stepennogo ryada na diadicheskoi polupryamoi”, Sib. matem. zhurn., 64:6 (2023), 1186–1198
M. A. Karapetyants, “On the Distribution of a Random Power Series on the Dyadic Half-Line”, Sib Math J, 64:6 (2023), 1319
Zhang Ya., Li Yu.-Zh., “Weak Nonhomogeneous Wavelet Dual Frames For Walsh Reducing Subspace of l-2 (R+)”, Int. J. Wavelets Multiresolut. Inf. Process., 20:01 (2022), 2150040
Yu. Farkov, M. Skopina, “Step wavelets on Vilenkin groups”, J Math Sci, 266:5 (2022), 696
Yun-Zhang Li, Trends in Mathematics, Current Trends in Analysis, its Applications and Computation, 2022, 645
Abdullah A., “Characterization of Non-Stationary Wavelets and Non-Stationary Multiresolution Analysis Wavelets Related to Walsh Functions”, Complex Anal. Oper. Theory, 15:5 (2021), 86
Biswaranjan Behera, Qaiser Jahan, Indian Statistical Institute Series, Wavelet Analysis on Local Fields of Positive Characteristic, 2021, 85
M. A. Karapetyants, V. Yu. Protasov, “Spaces of Dyadic Distributions”, Funct. Anal. Appl., 54:4 (2020), 272–277
Berdnikov G.S., Lukomskii S.F., “Discrete Orthogonal and Riesz Refinable Functions on Local Fields of Positive Characteristic”, Eur. J. Math., 6:4 (2020), 1505–1522
M. S. Bespalov, M. S. Bespalov, “Extraction of Walsh Harmonics by Linear Combinations of Dyadic Shifts”, J Math Sci, 249:6 (2020), 838
E. A. Lebedeva, “Approximation Properties of Systems of Periodic Wavelets on the Cantor Group”, J Math Sci, 244:4 (2020), 642
G. S. Berdnikov, “Necessary and sufficient condition for an orthogonal scaling function on Vilenkin groups”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 19:1 (2019), 24–33
Yu. A. Farkov, “Discrete wavelet transforms in Walsh analysis”, J. Math. Sci. (N. Y.), 257:1 (2021), 127–137
Farkov Yu.A., “Wavelet Frames Related to Walsh Functions”, Eur. J. Math., 5:1, SI (2019), 250–267
Zhang Ya., “Walsh Shift-Invariant Sequences and P-Adic Nonhomogeneous Dual Wavelet Frames in l-2 (R+)”, Results Math., 74:3 (2019), UNSP 111
Yu. A. Farkov, Pammy Manchanda, Abul Hasan Siddiqi, Industrial and Applied Mathematics, Construction of Wavelets Through Walsh Functions, 2019, 317
E. J. King, M. A. Skopina, “On biorthogonal p-adic wavelet bases”, J. Math. Sci. (N. Y.), 234:2 (2018), 158–169
A. A. Lyubushin, Yu. A. Farkov, “Sinkhronnye komponenty finansovykh vremennykh ryadov”, Kompyuternye issledovaniya i modelirovanie, 9:4 (2017), 639–655