Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2020, Volume 23, Number 1, Pages 69–82
DOI: https://doi.org/10.15372/SJNM20200105
(Mi sjvm733)
 

This article is cited in 2 scientific papers (total in 2 papers)

The finite-difference scheme for one-dimensional Maxwell's equations

A. F. Mastryukov

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent’eva 6, Novosibirsk, 630090 Russia
Full-text PDF (560 kB) Citations (2)
References:
Abstract: This paper deals with a difference scheme of second order of approximation for one-dimensional Maxwell’s equations using the Laquerre transform. Supplementary parameters are introduced into this difference scheme. These parameters are obtained by minimizing the difference approximation error of the Helmholtz equation. The values of these optimal parameters are independent of the step size and the number of nodes in the difference scheme. It is shown that application of the Laguerre decomposition allows obtaining a higher accuracy of approximation of the equations in comparison with similar difference schemes when using the Fourier decomposition. The finite difference scheme of second order with parameters was compared to the difference scheme of fourth order in two cases. The use of an optimal difference scheme when solving the problem of electromagnetic impulse propagation in an inhomogeneous medium yields the accuracy of the solution compatible with that of the difference scheme of fourth order. When solving the inverse problem, the second order difference scheme makes possible to attain a higher accuracy of the solution as compared to the difference scheme of fourth order. In the considered problems, the application of the difference scheme of second order with supplementary parameters has decreased the calculation time of a problem by 20–25 percent as compared to the fourth order difference scheme.
Key words: finite difference, optimal, accuracy, Laguerre method, electromagnetic, linear equations system, iterations.
Received: 21.12.2018
Revised: 09.02.2019
Accepted: 15.10.2019
English version:
Numerical Analysis and Applications, 2020, Volume 13, Issue 1, Pages 57–67
DOI: https://doi.org/10.1134/S199542392001005X
Bibliographic databases:
Document Type: Article
UDC: 550.834
Language: Russian
Citation: A. F. Mastryukov, “The finite-difference scheme for one-dimensional Maxwell's equations”, Sib. Zh. Vychisl. Mat., 23:1 (2020), 69–82; Num. Anal. Appl., 13:1 (2020), 57–67
Citation in format AMSBIB
\Bibitem{Mas20}
\by A.~F.~Mastryukov
\paper The finite-difference scheme for one-dimensional Maxwell's equations
\jour Sib. Zh. Vychisl. Mat.
\yr 2020
\vol 23
\issue 1
\pages 69--82
\mathnet{http://mi.mathnet.ru/sjvm733}
\crossref{https://doi.org/10.15372/SJNM20200105}
\transl
\jour Num. Anal. Appl.
\yr 2020
\vol 13
\issue 1
\pages 57--67
\crossref{https://doi.org/10.1134/S199542392001005X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000516579100005}
Linking options:
  • https://www.mathnet.ru/eng/sjvm733
  • https://www.mathnet.ru/eng/sjvm/v23/i1/p69
  • This publication is cited in the following 2 articles:
    1. A. F. Mastryukov, “Raznostnye skhemy 4-go poryadka approksimatsii dlya uravneniya Maksvella”, Sib. zhurn. vychisl. matem., 25:3 (2022), 289–301  mathnet  crossref
    2. Zair Uzakov, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2365, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2021, 070013  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:309
    Full-text PDF :100
    References:60
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025