Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2009, Volume 12, Number 1, Pages 91–105 (Mi sjvm7)  

This article is cited in 54 scientific papers (total in 54 papers)

L-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations

Zuliang Lua, Yanping Chenb

a Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Department of Mathematics, Xiangtan University, Xiangtan 411105, P.R. of China
b School of Mathematical Sciences, South China Normal University, Guangzhou 510631, P.R. of China
References:
Abstract: In this paper, we investigate L-error estimates for convex quadratic optimal control problems governed by nonlinear elliptic partial differential equations using mixed finite element methods. The state and the co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive L-error estimates of optimal order for a mixed finite element approximation of a semilinear elliptic optimal control problem. Finally, we present numerical tests which confirm our theoretical results.
Key words: L-error estimates, optimal control problem, semilinear elliptic equation, mixed finite element methods.
Received: 02.06.2008
Revised: 17.07.2008
English version:
Numerical Analysis and Applications, 2009, Volume 2, Issue 1, Pages 74–86
DOI: https://doi.org/10.1134/S1995423909010078
Bibliographic databases:
UDC: 517.93+519.713:007.52
Language: Russian
Citation: Zuliang Lu, Yanping Chen, “L-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations”, Sib. Zh. Vychisl. Mat., 12:1 (2009), 91–105; Num. Anal. Appl., 2:1 (2009), 74–86
Citation in format AMSBIB
\Bibitem{ZulChe09}
\by Zuliang Lu, Yanping Chen
\paper $L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations
\jour Sib. Zh. Vychisl. Mat.
\yr 2009
\vol 12
\issue 1
\pages 91--105
\mathnet{http://mi.mathnet.ru/sjvm7}
\transl
\jour Num. Anal. Appl.
\yr 2009
\vol 2
\issue 1
\pages 74--86
\crossref{https://doi.org/10.1134/S1995423909010078}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65249097240}
Linking options:
  • https://www.mathnet.ru/eng/sjvm7
  • https://www.mathnet.ru/eng/sjvm/v12/i1/p91
  • This publication is cited in the following 54 articles:
    1. Changil Kim, Jayong Ri, “A Priori and a Posteriori Error Estimates of Finite Element Method for Source Control Problems Governed by a System of Quasi-linear Elliptic Equations”, IJTAM, 11:1 (2025), 1  crossref
    2. Changling Xu, Hongbo Chen, “A two-grid P02-P1 mixed finite element scheme for semilinear elliptic optimal control problems”, MATH, 7:4 (2022), 6153  crossref
    3. Chunjuan Hou, Zuliang Lu, Xuejiao Chen, Xiankui Wu, Fei Cai, “Superconvergence for optimal control problems governed by semilinear parabolic equations”, MATH, 7:5 (2022), 9405  crossref
    4. Lu Z., Cao L., Li L., “Interpolation Coefficients Mixed Finite Element Methods For General Semilinear Dirichlet Boundary Elliptic Optimal Control Problems”, Appl. Anal., 97:14 (2018), 2496–2509  crossref  mathscinet  zmath  isi  scopus
    5. Lu Z., Zhang Sh., “L-Infinity-Error Estimates of Rectangular Mixed Finite Element Methods For Bilinear Optimal Control Problem”, Appl. Math. Comput., 300 (2017), 79–94  crossref  mathscinet  isi  scopus
    6. Manickam K., Prakash P., “Mixed Finite Element Methods For Fourth Order Elliptic Optimal Control Problems”, Numer. Math.-Theory Methods Appl., 9:4 (2016), 528–548  crossref  isi
    7. Lu Z., “A Posteriori Error Estimates of Triangular Mixed Finite Element Methods For Quadratic Convection Diffusion Optimal Control Problems”, Math. Rep., 18:3 (2016), 335–354  isi
    8. Lu Z., “a Residual-Based Posteriori Error Estimates For Hp Finite Element Solutions of General Bilinear Optimal Control Problems”, J. Math. Inequal., 9:3 (2015), 665–682  crossref  mathscinet  isi  scopus
    9. Hou Ch., Chen Ya., Lu Z., “a Posteriori Error Estimates of Mixed Finite Element Solutions For Fourth Order Parabolic Control Problems”, J. Inequal. Appl., 2015, 240  crossref  mathscinet  isi  scopus
    10. Hou T., “Error Estimates of Rt1 Mixed Methods for Distributed Optimal Control Problems”, Bull. Korean. Math. Soc., 51:1 (2014), 139–156  crossref  mathscinet  zmath  isi  scopus
    11. Lu Z., “L-Infinity-Estimates of Rectangular Mixed Methods for Nonlinear Constrained Optimal Control Problem”, Bull. Malays. Math. Sci. Soc., 37:1 (2014), 271–284  mathscinet  zmath  isi
    12. Lu Z., “a Posteriori Error Estimates of Fully Discrete Finite-Element Schemes For Nonlinear Parabolic Integro-Differential Optimal Control Problems”, Adv. Differ. Equ., 2014, 15  crossref  mathscinet  isi  scopus
    13. Lu Z., Huang X., “a Priori Error Estimates of Mixed Finite Element Methods For General Linear Hyperbolic Convex Optimal Control Problems”, Abstract Appl. Anal., 2014, 547490  crossref  mathscinet  isi  scopus
    14. Z. Lu, D. Liu, “A posteriori error estimates for boundary parabolic optimal control problems”, Lobachevskii J Math, 35:2 (2014), 92  crossref
    15. T. Hou, “Superconvergence and a posteriori error estimates of RT1 mixed methods for elliptic control problems with an integral constraint”, Num. Anal. Appl., 6:2 (2013), 163–175  mathnet  crossref  mathscinet
    16. Chen Ya., Hou T., “Error Estimates and Superconvergence of Rt0 Mixed Methods for a Class of Semilinear Elliptic Optimal Control Problems!”, Numer. Math.-Theory Methods Appl., 6:4 (2013), 637–656  crossref  mathscinet  zmath  isi  scopus
    17. Chen Ya., Lu Z., Huang Yu., “Superconvergence of Triangular Raviart-Thomas Mixed Finite Element Methods for a Bilinear Constrained Optimal Control Problem”, Comput. Math. Appl., 66:8 (2013), 1498–1513  crossref  mathscinet  zmath  isi  scopus
    18. Hou T., “Superconvergence and l-Infinity-Error Estimates of the Lowest Order Mixed Methods for Distributed Optimal Control Problems Governed by Semilinear Elliptic Equations”, Numer. Math.-Theory Methods Appl., 6:3 (2013), 479–498  crossref  mathscinet  zmath  isi
    19. Lu Z., Liu D., “A Posteriori Error Estimates of Variational Discretization Mixed Finite Element Methods for Integro-Differential Optimal Control Problem”, 2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), IEEE, 2013, 37–41  crossref  isi  scopus
    20. Lu Z., “Adaptive Semidiscrete Finite Element Methods for Semilinear Parabolic Integrodifferential Optimal Control Problem with Control Constraint”, J. Appl. Math., 2013, 302935  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:859
    Full-text PDF :128
    References:100
    First page:4
     
      Contact us:
    math-net2025_09@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025