Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2018, Volume 21, Number 3, Pages 243–254
DOI: https://doi.org/10.15372/SJNM20180301
(Mi sjvm681)
 

This article is cited in 9 scientific papers (total in 9 papers)

The analysis of numerical differentiation formulas on the Shishkin mesh with of a boundary layer

A. I. Zadorin

Sobolev Institute of Mathematics SB RAS, 4 Acad. Koptyug av., Novosibirsk, 630090, Russia
Full-text PDF (519 kB) Citations (9)
References:
Abstract: The problem of numerical differentiation of functions with large gradients in the boundary layer is investigated. The problem is that in the case of functions with large gradients and a uniform grid, the relative error of the classical difference formulas for derivatives can be significant. It is proposed to use the Shishkin mesh to obtain a relative error of the formulas independent of a small parameter. Error estimates that depend on the number of nodes of the difference formulas for a derivative of a given order are obtained. It is proved that the error estimate is uniform in terms of a small parameter. In the case of the uniform grid, the region of the boundary layer is allocated, outside of which the numerical differentiation formulas have an error that is uniform in terms of a small parameter. The results of the numerical experiments are presented.
Key words: one-variable function, boundary layer, numerical differentiation formula, Shishkin mesh, error estimate.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-06584
16-01-00727
This work was supported by the Russian Foundation for Basic Research (projects no. 15-01-06584 and 16-01-00727).
Received: 05.10.2017
Revised: 10.01.2018
English version:
Numerical Analysis and Applications, 2018, Volume 11, Issue 3, Pages 193–203
DOI: https://doi.org/10.1134/S1995423918030011
Bibliographic databases:
Document Type: Article
UDC: 519.653
Language: Russian
Citation: A. I. Zadorin, “The analysis of numerical differentiation formulas on the Shishkin mesh with of a boundary layer”, Sib. Zh. Vychisl. Mat., 21:3 (2018), 243–254; Num. Anal. Appl., 11:3 (2018), 193–203
Citation in format AMSBIB
\Bibitem{Zad18}
\by A.~I.~Zadorin
\paper The analysis of numerical differentiation formulas on the Shishkin mesh with of a~boundary layer
\jour Sib. Zh. Vychisl. Mat.
\yr 2018
\vol 21
\issue 3
\pages 243--254
\mathnet{http://mi.mathnet.ru/sjvm681}
\crossref{https://doi.org/10.15372/SJNM20180301}
\elib{https://elibrary.ru/item.asp?id=35421585}
\transl
\jour Num. Anal. Appl.
\yr 2018
\vol 11
\issue 3
\pages 193--203
\crossref{https://doi.org/10.1134/S1995423918030011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000443024400001}
\elib{https://elibrary.ru/item.asp?id=35783934}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052368504}
Linking options:
  • https://www.mathnet.ru/eng/sjvm681
  • https://www.mathnet.ru/eng/sjvm/v21/i3/p243
  • This publication is cited in the following 9 articles:
    1. A. I. Zadorin, “Formulas for Numerical Differentiation on a Uniform Mesh in the Presence of a Boundary Layer”, Comput. Math. and Math. Phys., 64:6 (2024), 1167  crossref
    2. A. I. Zadorin, “Analiz formul chislennogo differentsirovaniya na ravnomernoi setke pri nalichii pogranichnogo sloya”, Tr. IMM UrO RAN, 30, no. 4, 2024, 106–116  mathnet  crossref  elib
    3. A. I. Zadorin, “Analysis of Numerical Differentiation Formulas on a Uniform Grid in the Presence of a Boundary Layer”, Proc. Steklov Inst. Math., 327:S1 (2024), S275  crossref
    4. A. I. Zadorin, “Formuly chislennogo differentsirovaniya funktsii s bolshimi gradientami”, Sib. zhurn. vychisl. matem., 26:1 (2023), 17–26  mathnet  crossref
    5. A. I. Zadorin, “Analysis of numerical differential formulas on a Bakhvalov mesh in the presence of a boundary layer”, Comput. Math. Math. Phys., 63:2 (2023), 175–183  mathnet  mathnet  crossref  crossref
    6. N. A. Zadorin, “Analiz formul chislennogo differentsirovaniya funktsii s bolshimi gradientami na setke Bakhvalova”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 163, no. 3, Izd-vo Kazanskogo un-ta, Kazan, 2021, 261–275  mathnet  crossref
    7. A. I. Zadorin, N. A. Zadorin, “Non-polynomial interpolation of functions with large gradients and its application”, Comput. Math. Math. Phys., 61:2 (2021), 167–176  mathnet  crossref  crossref  isi  elib
    8. N. A. Zadorin, “Numerical differentiation on the bakhvalov mesh in the presence of an exponential boundary layer”, Iv International Scientific and Technical Conference Mechanical Science and Technology Update (Mstu-2020), Journal of Physics Conference Series, 1546, IOP Publishing Ltd, 2020, 012108  crossref  mathscinet  isi  scopus
    9. I. A. Blatov, N. A. Zadorin, “Interpolyatsiya na setke Bakhvalova pri nalichii eksponentsialnogo pogranichnogo sloya”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 161, no. 4, Izd-vo Kazanskogo un-ta, Kazan, 2019, 497–508  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:290
    Full-text PDF :52
    References:51
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025