Abstract:
This paper derives exact and approximate formulas for the distribution, average values and variances of the number of units on the segments of binary Markov sequences. Various ways to calculate these formulas are proposed. Estimates of the errors are given. An example of the calculation for a binary Markov model of the precipitation process is presented.
Citation:
L. Ya. Saveliev, “Calculation of the number of states in binary Markov stochastic models”, Sib. Zh. Vychisl. Mat., 18:2 (2015), 191–200; Num. Anal. Appl., 8:2 (2015), 159–167
\Bibitem{Sav15}
\by L.~Ya.~Saveliev
\paper Calculation of the number of states in binary Markov stochastic models
\jour Sib. Zh. Vychisl. Mat.
\yr 2015
\vol 18
\issue 2
\pages 191--200
\mathnet{http://mi.mathnet.ru/sjvm576}
\crossref{https://doi.org/10.15372/SJNM20150207}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3491696}
\elib{https://elibrary.ru/item.asp?id=23463697}
\transl
\jour Num. Anal. Appl.
\yr 2015
\vol 8
\issue 2
\pages 159--167
\crossref{https://doi.org/10.1134/S199542391502007X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84930678488}
Linking options:
https://www.mathnet.ru/eng/sjvm576
https://www.mathnet.ru/eng/sjvm/v18/i2/p191
This publication is cited in the following 2 articles:
N. M. Mezhennaya, “Otsenka dlya raspredeleniya chisel serii v sluchainoi posledovatelnosti, upravlyaemoi statsionarnoi tsepyu Markova”, PDM, 2017, no. 35, 14–28
R. Fang, M. Wu, Sh. Jiang, “On-line status assessment of wind turbines based on improved fuzzy comprehensive evaluation method”, J. Intell. Fuzzy Syst., 31:6, SI (2016), 2813–2819