Abstract:
We construct a nonstationary mathematical model of a vortex motion of an incompressible polymeric fluid. Some partial solutions to this model are found in the stationary case. We deduce a variant of this model when the pressure is time-independent along the axis.
Citation:
A. M. Blokhin, R. E. Semenko, “On one model of a vortex motion of an incompressible polymeric fluid in the axial zone”, Sib. Zh. Ind. Mat., 19:1 (2016), 52–61; J. Appl. Industr. Math., 10:1 (2016), 69–77
\Bibitem{BloSem16}
\by A.~M.~Blokhin, R.~E.~Semenko
\paper On one model of a~vortex motion of an incompressible polymeric fluid in the axial zone
\jour Sib. Zh. Ind. Mat.
\yr 2016
\vol 19
\issue 1
\pages 52--61
\mathnet{http://mi.mathnet.ru/sjim911}
\crossref{https://doi.org/10.17377/sibjim.2016.19.105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3549857}
\elib{https://elibrary.ru/item.asp?id=25591891}
\transl
\jour J. Appl. Industr. Math.
\yr 2016
\vol 10
\issue 1
\pages 69--77
\crossref{https://doi.org/10.1134/S1990478916010087}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84961626561}
Linking options:
https://www.mathnet.ru/eng/sjim911
https://www.mathnet.ru/eng/sjim/v19/i1/p52
This publication is cited in the following 2 articles:
A. M. Blokhin, R. E. Semenko, A. S. Rudometova, “Magnetohydrodynamic vortex motion of an incompressible polymeric fluid”, J. Appl. Industr. Math., 15:1 (2021), 7–16
A. M. Blokhin, R. E. Semenko, “Incompressible polymer fluid flow past a flat wedge”, J. Appl. Mech. Tech. Phys., 59:1 (2018), 32–40