Abstract:
The paper deals with an optimal control problem for the elliptic system of equations describing an equilibrium of a Kirchhoff–Love plate with delaminated thin rigid inclusion. It is required to minimize the mean square integral deviation of the bending moment from the function given on the exterior boundary. The inclusion shape is considered as the control function. The solvability of the problem is established.
Citation:
V. V. Shcherbakov, “Existence of an optimal shape for thin rigid inclusions in the Kirchhoff–Love plate”, Sib. Zh. Ind. Mat., 16:4 (2013), 142–151; J. Appl. Industr. Math., 8:1 (2014), 97–105
\Bibitem{Shc13}
\by V.~V.~Shcherbakov
\paper Existence of an optimal shape for thin rigid inclusions in the Kirchhoff--Love plate
\jour Sib. Zh. Ind. Mat.
\yr 2013
\vol 16
\issue 4
\pages 142--151
\mathnet{http://mi.mathnet.ru/sjim812}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3234800}
\transl
\jour J. Appl. Industr. Math.
\yr 2014
\vol 8
\issue 1
\pages 97--105
\crossref{https://doi.org/10.1134/S1990478914010116}
Linking options:
https://www.mathnet.ru/eng/sjim812
https://www.mathnet.ru/eng/sjim/v16/i4/p142
This publication is cited in the following 35 articles:
N. A. Nikolaeva, “Plastina Kirkhgofa — Lyava s ploskim zhestkim vklyucheniem”, Chelyab. fiz.-matem. zhurn., 8:1 (2023), 29–46
N. P. Lazarev, E. F. Sharin, E. S. Efimova, “Equilibrium Problem for an Inhomogeneous Kirchhoff–Love Plate Contacting with a Partially Delaminated Inclusion”, Lobachevskii J Math, 44:10 (2023), 4127
Nyurgun P. Lazarev, “Equilibrium problem for a thermoelastic Kirchhoff–Love plate with a delaminated flat rigid inclusion”, Phil. Trans. R. Soc. A., 380:2236 (2022)
Nyurgun Lazarev, “TOPICAL ISSUES OF THERMOPHYSICS, ENERGETICS AND HYDROGASDYNAMICS IN THE ARCTIC CONDITIONS”: Dedicated to the 85th Birthday Anniversary of Professor E. A. Bondarev, 2528, “TOPICAL ISSUES OF THERMOPHYSICS, ENERGETICS AND HYDROGASDYNAMICS IN THE ARCTIC CONDITIONS”: Dedicated to the 85th Birthday Anniversary of Professor E. A. Bondarev, 2022, 020011
Lazarev N.P. Semenova G.M. Romanova N.A., “On a Limiting Passage as the Thickness of a Rigid Inclusions in An Equilibrium Problem For a Kirchhoff Love Plate With a Crack”, J. Sib. Fed. Univ.-Math. Phys., 14:1 (2021), 28–41
Rudoy E., “Asymptotic Justification of Models of Plates Containing Inside Hard Thin Inclusions”, Technologies, 8:4 (2020), 59
Furtsev A. Rudoy E., “Variational Approach to Modeling Soft and Stiff Interfaces in the Kirchhoff-Love Theory of Plates”, Int. J. Solids Struct., 202 (2020), 562–574
Lazarev N.P., “Equilibrium Problem For An Thermoelastic Kirchhoff-Love Plate With a Nonpenetration Condition For Known Configurations of Crack Edges”, Sib. Electron. Math. Rep., 17 (2020), 2096–2104
Pyatkina V E., “a Contact of Two Elastic Plates Connected Along a Thin Rigid Inclusion”, Sib. Electron. Math. Rep., 17 (2020), 1797–1815
G E Semenova, N P Lazarev, “Unique solvability of an equilibrium problem for a Kirchhoff-Love plate with a crack along the boundary of a flat rigid inclusion”, J. Phys.: Conf. Ser., 1666:1 (2020), 012046
Khludnev A., “On Thin Timoshenko Inclusions in Elastic Bodies With Defects”, Arch. Appl. Mech., 89:8 (2019), 1691–1704
A. I. Furtsev, “On Contact Between a Thin Obstacle and a Plate Containing a Thin Inclusion”, J Math Sci, 237:4 (2019), 530
A. M. Khludnev, T. S. Popova, “Zadacha sopryazheniya uprugogo vklyucheniya Timoshenko i poluzhestkogo vklyucheniya”, Matematicheskie zametki SVFU, 25:1 (2018), 73–89
A. M. Khludnev, “Equilibrium of an elastic body with closely spaced thin inclusions”, Comput. Math. Math. Phys., 58:10 (2018), 1660–1672
N. Lazarev, N. Neustroeva, “Optimal control of rigidity parameter of elastic inclusions in composite plate with a crack”, Mathematics and Computing (ICMC 2018), Springer Proceedings in Mathematics & Statistics, 253, eds. D. Ghosh, D. Giri, R. Mohapatra, K. Sakurai, E. Savas, T. Som, Springer, 2018, 67–77
A. M. Khludnev, “Asymptotics of anisotropic weakly curved inclusions in an elastic body”, J. Appl. Industr. Math., 11:1 (2017), 88–98
N. V. Neustroeva, N. P. Lazarev, “The derivative of the energy functional in an equilibrium problem for a Timoshenko plate with a crack on the boundary of an elastic inclusion”, J. Appl. Industr. Math., 11:2 (2017), 252–262
A. M. Khludnev, T. S. Popova, “Timoshenko inclusions in elastic bodies crossing an external boundary at zero angle”, Acta Mech. Solida Sin., 30:3 (2017), 327–333
A. M. Khludnev, L. Faella, C. Perugia, “Optimal control of rigidity parameters of thin inclusions in composite materials”, ZAMM Z. Angew. Math. Phys., 68:2 (2017), 47
A. M. Khludnev, T. S. Popova, “On Crack Propagations in Elastic Bodies With Thin Inclusions”, Sib. Electron. Math. Rep., 14 (2017), 586–599