Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2002, Volume 5, Number 4, Pages 38–54 (Mi sjim395)  

This article is cited in 5 scientific papers (total in 5 papers)

Recognition of a quasiperiodic sequence that includes identical subsequences-fragments

A. V. Kel'manov, S. A. Khamidullin, L. V. Okol'nishnikova

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (324 kB) Citations (5)
References:
Received: 16.08.2002
Bibliographic databases:
UDC: 519.2:621.391
Language: Russian
Citation: A. V. Kel'manov, S. A. Khamidullin, L. V. Okol'nishnikova, “Recognition of a quasiperiodic sequence that includes identical subsequences-fragments”, Sib. Zh. Ind. Mat., 5:4 (2002), 38–54
Citation in format AMSBIB
\Bibitem{KelKhaOko02}
\by A.~V.~Kel'manov, S.~A.~Khamidullin, L.~V.~Okol'nishnikova
\paper Recognition of a~quasiperiodic sequence that includes identical subsequences-fragments
\jour Sib. Zh. Ind. Mat.
\yr 2002
\vol 5
\issue 4
\pages 38--54
\mathnet{http://mi.mathnet.ru/sjim395}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1960784}
\zmath{https://zbmath.org/?q=an:1075.93540}
Linking options:
  • https://www.mathnet.ru/eng/sjim395
  • https://www.mathnet.ru/eng/sjim/v5/i4/p38
  • This publication is cited in the following 5 articles:
    1. A. V. Kel'manov, L. V. Mikhailova, “Recognition of a sequence as a structure containing series of recurring vectors from an alphabet”, Comput. Math. Math. Phys., 53:7 (2013), 1044–1055  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    2. A. V. Kelmanov, L. V. Mikhailova, “Raspoznavanie chislovoi posledovatelnosti, vklyuchayuschei serii kvaziperiodicheski povtoryayuschikhsya etalonnykh fragmentov”, Sib. zhurn. industr. matem., 10:4 (2007), 61–75  mathnet  mathscinet
    3. A. V. Kelmanov, L. V. Mikhailova, “Raspoznavanie chislovoi posledovatelnosti, vklyuchayuschei serii kvaziperiodicheski povtoryayuschikhsya etalonnykh fragmentov. Sluchai izvestnogo chisla fragmentov”, Sib. zhurn. industr. matem., 8:3 (2005), 69–86  mathnet  mathscinet  zmath
    4. A. V. Kelmanov, S. A. Khamidullin, “Raspoznavanie chislovoi posledovatelnosti po fragmentam kvaziperiodicheski povtoryayuscheisya etalonnoi posledovatelnosti”, Sib. zhurn. industr. matem., 7:2 (2004), 68–87  mathnet  mathscinet  zmath
    5. A. V. Kelmanov, S. A. Khamidullin, “Aposteriornoe obnaruzhenie kvaziperiodicheski povtoryayuschegosya fragmenta chislovoi”, Sib. zhurn. industr. matem., 6:2 (2003), 46–63  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:386
    Full-text PDF :112
    References:78
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025