Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2023, Volume 26, Number 4, Pages 143–159
DOI: https://doi.org/10.33048/SIBJIM.2023.26.410
(Mi sjim1266)
 

On the error in determining the protective layer boundary in the inverse heat problem

V. P. Tanana, B. A. Markov

South Ural State University, Chelyabinsk, 454080 Russia
References:
Abstract: The paper studies the problem of determining the error introduced by inaccuracy in determining the thickness of a protective heat-resistant coating of composite materials. The mathematical problem is the heat equation on an inhomogeneous half-line. The temperature on the outer side of the half-line ($x = 0$) is considered unknown over an infinite time interval. To find it, the temperature is measured at the interface of the media at the point $x = x_0$. An analytical study of the direct problem is carried out and enables a rigorous statement of the inverse problem and determining the functional spaces in which it is natural to solve the inverse problem. The main difficulty that the present paper aims at solving is obtaining an estimate for the error of the approximate solution. To estimate the conditional correctness modulus, the projection regularization method is used; this allows obtaining order-accurate estimates.
Keywords: error estimate, conditional correctness modulus, Fourier transform, ill-posed problem.
Received: 12.09.2023
Revised: 28.10.2023
Accepted: 16.11.2023
English version:
Journal of Applied and Industrial Mathematics, 2023, Volume 17, Issue 4, Pages 859–873
DOI: https://doi.org/10.1134/S1990478923040142
Document Type: Article
UDC: 517.948
Language: Russian
Citation: V. P. Tanana, B. A. Markov, “On the error in determining the protective layer boundary in the inverse heat problem”, Sib. Zh. Ind. Mat., 26:4 (2023), 143–159; J. Appl. Industr. Math., 17:4 (2023), 859–873
Citation in format AMSBIB
\Bibitem{TanMar23}
\by V.~P.~Tanana, B.~A.~Markov
\paper On the error in determining the protective layer boundary in the inverse heat problem
\jour Sib. Zh. Ind. Mat.
\yr 2023
\vol 26
\issue 4
\pages 143--159
\mathnet{http://mi.mathnet.ru/sjim1266}
\crossref{https://doi.org/10.33048/SIBJIM.2023.26.410}
\transl
\jour J. Appl. Industr. Math.
\yr 2023
\vol 17
\issue 4
\pages 859--873
\crossref{https://doi.org/10.1134/S1990478923040142}
Linking options:
  • https://www.mathnet.ru/eng/sjim1266
  • https://www.mathnet.ru/eng/sjim/v26/i4/p143
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:89
    Full-text PDF :32
    References:24
    First page:2
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025