Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2022, Volume 25, Number 4, Pages 193–205
DOI: https://doi.org/10.33048/SIBJIM.2021.25.415
(Mi sjim1205)
 

This article is cited in 4 scientific papers (total in 4 papers)

Estimates of solutions to differential equations with distributed delay describing the competition of several types of microorganisms

M. A. Skvortsova, T. Yskak

Sobolev Institute of Mathematics SB RAS, pr. Acad. Koptyuga 4, Novosibirsk 630090, Russia
Full-text PDF (557 kB) Citations (4)
References:
DOI: https://doi.org/10.33048/SIBJIM.2021.25.415
Abstract: We consider a model of competition of n species in a chemostat. This model is a system of n+1 differential equations with infinite distributed delay. One equation is responsible for the change in nutrient concentration, and the other n are responsible for the change in the number of species. The transformation of a nutrient into viable cells does not occur instantly, and requires some time, which is taken into account by the presence of a delay. Under the condition when the concentration of the introduced nutrient is below a certain level, we have constructed Lyapunov–Krasovskii functionals, with the help of which we obtain estimates for all components of solutions. The estimates characterize the extinction rates of all species in the chemostat and the stabilization rate of the nutrient concentration to a constant value.
Keywords: species competition model, chemostat, delay differential equations, infinite distributed delay, estimates of solutions, Lyapunov–Krasovskii functionals. .
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-281
The authors are grateful to G.V. Demidenko for attention to the work.
Received: 20.06.2022
Revised: 20.06.2022
Accepted: 22.06.2022
English version:
Journal of Applied and Industrial Mathematics, 2022, Volume 16, Issue 4, Pages 800–808
DOI: https://doi.org/10.1134/S1990478922040196
Document Type: Article
UDC: 517.929.4
Language: Russian
Citation: M. A. Skvortsova, T. Yskak, “Estimates of solutions to differential equations with distributed delay describing the competition of several types of microorganisms”, Sib. Zh. Ind. Mat., 25:4 (2022), 193–205; J. Appl. Industr. Math., 16:4 (2022), 800–808
Citation in format AMSBIB
\Bibitem{SkvYsk22}
\by M.~A.~Skvortsova, T.~Yskak
\paper Estimates of solutions to differential equations with distributed delay describing the competition of several types of microorganisms
\jour Sib. Zh. Ind. Mat.
\yr 2022
\vol 25
\issue 4
\pages 193--205
\mathnet{http://mi.mathnet.ru/sjim1205}
\transl
\jour J. Appl. Industr. Math.
\yr 2022
\vol 16
\issue 4
\pages 800--808
\crossref{https://doi.org/10.1134/S1990478922040196}
Linking options:
  • https://www.mathnet.ru/eng/sjim1205
  • https://www.mathnet.ru/eng/sjim/v25/i4/p193
  • This publication is cited in the following 4 articles:
    1. I. I. Matveeva, “Estimates of solutions for a class of nonautonomous systems of neutral type with concentrated and distributed delays”, Comput. Math. Math. Phys., 64:8 (2024), 1796–1808  mathnet  mathnet  crossref  crossref
    2. T. K. Iskakov, M. A. Skvortsova, “Estimates for solutions of a biological model with infinite distributed delay”, Comput. Math. Math. Phys., 64:8 (2024), 1689–1703  mathnet  mathnet  crossref  crossref
    3. T. K. Yskak, “Ustoichivost reshenii sistem nelineinykh differentsialnykh uravnenii s beskonechnym raspredelennym zapazdyvaniem”, Chelyab. fiz.-matem. zhurn., 8:4 (2023), 542–552  mathnet  crossref
    4. M. A. Skvortsova, “Estimates of solutions in a model of antiviral immune response”, Siberian Adv. Math., 33:4 (2023), 353–368  mathnet  crossref  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:193
    Full-text PDF :74
    References:39
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025