Abstract:
We consider one-dimensional elliptic Ruijsenaars model of type BC1BC1. It is given by a three-term difference
Schrödinger operator LL containing 8 coupling constants. We show that when all coupling constants are integers, LL has meromorphic eigenfunctions expressed by a variant of Bethe ansatz. This result generalizes the Bethe ansatz formulas known in the A1A1-case.
\Bibitem{Cha07}
\by Oleg Chalykh
\paper Bethe Ansatz for the Ruijsenaars Model of $BC_1$-Type
\jour SIGMA
\yr 2007
\vol 3
\papernumber 028
\totalpages 9
\mathnet{http://mi.mathnet.ru/sigma154}
\crossref{https://doi.org/10.3842/SIGMA.2007.028}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2299829}
\zmath{https://zbmath.org/?q=an:1134.33017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889236146}
Linking options:
https://www.mathnet.ru/eng/sigma154
https://www.mathnet.ru/eng/sigma/v3/p28
This publication is cited in the following 2 articles:
He W., “Spectra of Elliptic Potentials and Supersymmetric Gauge Theories”, J. High Energy Phys., 2020, no. 8, 070
Simon N. M. Ruijsenaars, “Hilbert–Schmidt Operators vs. Integrable Systems of Elliptic Calogero–Moser Type IV. The Relativistic Heun (van Diejen) Case”, SIGMA, 11 (2015), 004, 78 pp.