Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2016, Volume 12, 002, 172 pp.
DOI: https://doi.org/10.3842/SIGMA.2016.002
(Mi sigma1084)
 

This article is cited in 12 scientific papers (total in 12 papers)

On Some Quadratic Algebras I 12: Combinatorics of Dunkl and Gaudin Elements, Schubert, Grothendieck, Fuss–Catalan, Universal Tutte and Reduced Polynomials

Anatol N. Kirillovabc

a Research Institute of Mathematical Sciences (RIMS), Kyoto, Sakyo-ku 606-8502, Japan
b The Kavli Institute for the Physics and Mathematics of the Universe (IPMU), 5-1-5 Kashiwanoha, Kashiwa, 277-8583, Japan
c Department of Mathematics, National Research University Higher School of Economics, 7 Vavilova Str., 117312, Moscow, Russia
References:
Abstract: We study some combinatorial and algebraic properties of certain quadratic algebras related with dynamical classical and classical Yang–Baxter equations.
Keywords: braid and Yang–Baxter groups; classical and dynamical Yang–Baxter relations; classical Yang–Baxter, Kohno–Drinfeld and 3-term relations algebras; Dunkl, Gaudin and Jucys–Murphy elements; small quantum cohomology and K-theory of flag varieties; Pieri rules; Schubert, Grothendieck, Schröder, Ehrhart, Chromatic, Tutte and Betti polynomials; reduced polynomials; Chan–Robbins–Yuen polytope; k-dissections of a convex (n+k+1)-gon, Lagrange inversion formula and Richardson permutations; multiparameter deformations of Fuss–Catalan and Schröder polynomials; Motzkin, Riordan, Fine, poly-Bernoulli and Stirling numbers; Euler numbers and Brauer algebras; VSASM and CSTCPP; Birman–Ko–Lee monoid; Kronecker elliptic sigma functions.
Received: March 23, 2015; in final form December 27, 2015; Published online January 5, 2016
Bibliographic databases:
Document Type: Article
MSC: 14N15; 53D45; 16W30
Language: English
Citation: Anatol N. Kirillov, “On Some Quadratic Algebras I 12: Combinatorics of Dunkl and Gaudin Elements, Schubert, Grothendieck, Fuss–Catalan, Universal Tutte and Reduced Polynomials”, SIGMA, 12 (2016), 002, 172 pp.
Citation in format AMSBIB
\Bibitem{Kir16}
\by Anatol~N.~Kirillov
\paper On Some Quadratic Algebras I $\frac{1}{2}$: Combinatorics of Dunkl and Gaudin Elements, Schubert, Grothendieck, Fuss--Catalan, Universal Tutte and Reduced Polynomials
\jour SIGMA
\yr 2016
\vol 12
\papernumber 002
\totalpages 172
\mathnet{http://mi.mathnet.ru/sigma1084}
\crossref{https://doi.org/10.3842/SIGMA.2016.002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000367688800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84955066986}
Linking options:
  • https://www.mathnet.ru/eng/sigma1084
  • https://www.mathnet.ru/eng/sigma/v12/p2
  • This publication is cited in the following 12 articles:
    1. Shinsuke Iwao, “Free-fermions and skew stable Grothendieck polynomials”, J Algebr Comb, 56:2 (2022), 493  crossref
    2. A. Levin, M. Olshanetsky, A. Zotov, “Odd supersymmetric Kronecker elliptic function and Yang-Baxter equations”, J. Math. Phys., 61:10 (2020), 103504  crossref  mathscinet  zmath  isi  scopus
    3. Buciumas V., Scrimshaw T., Weber K., “Colored Five-Vertex Models and Lascoux Polynomials and Atoms”, J. Lond. Math. Soc.-Second Ser., 102:3 (2020), 1047–1066  crossref  mathscinet  isi  scopus
    4. A. Levin, M. Olshanetsky, A. Zotov, “Odd supersymmetrization of elliptic r-matrices”, J. Phys. A-Math. Theor., 53:18 (2020), 185202  crossref  mathscinet  isi  scopus
    5. Shinsuke Iwao, “Grothendieck polynomials and the boson-fermion correspondence”, Algebraic Combinatorics, 3:5 (2020), 1023  crossref
    6. I. A. Sechin, A. V. Zotov, “GLNM quantum dynamical R-matrix based on solution of the associative Yang–Baxter equation”, Russian Math. Surveys, 74:4 (2019), 767–769  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. A. Grekov, I. Sechin, A. Zotov, “Generalized model of interacting integrable tops”, J. High Energy Phys., 2019, no. 10, 081  crossref  mathscinet  isi
    8. T. Hudson, T. Matsumura, “Vexillary degeneracy loci classes in K-theory and algebraic cobordism”, Eur. J. Comb., 70 (2018), 190–201  crossref  mathscinet  zmath  isi
    9. Darij Grinberg, “t-Unique Reductions for Mészáros's Subdivision Algebra”, SIGMA, 14 (2018), 078, 34 pp.  mathnet  crossref
    10. Seung Jin Lee, “Chern class of Schubert cells in the flag manifold and related algebras”, J Algebr Comb, 47:2 (2018), 213  crossref
    11. T. Matsumura, “An algebraic proof of determinant formulas of Grothendieck polynomials”, Proc. Jpn. Acad. Ser. A-Math. Sci., 93:8 (2017), 82–85  crossref  mathscinet  zmath  isi  scopus
    12. Damir Yeliussizov, “Duality and deformations of stable Grothendieck polynomials”, J Algebr Comb, 45:1 (2017), 295  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:343
    Full-text PDF :114
    References:95
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025