Loading [MathJax]/jax/output/SVG/config.js
Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2021, Volume 18, Issue 1, Pages 495–510
DOI: https://doi.org/10.33048/semi.2021.18.036
(Mi semr1376)
 

This article is cited in 6 scientific papers (total in 6 papers)

Real, complex and functional analysis

On band preserving orthogonally additive operators

N. M. Abasov

MAI – Moscow Aviation Institute (National Research University), 3, Orshanskaya str., Moscow, 121552, Russia
Full-text PDF (391 kB) Citations (6)
References:
Abstract: In this paper, we investigate a new class of operators on vector lattices. We say that an orthogonally additive operator $T:E\to E$ on a vector lattice $E$ is band preserving if $T(D)\subset \{D\}^{\perp\perp}$ for every subset $D$ of $E$. We show that the set of all band preserving operators on a Dedekind complete vector lattice $E$ is a band in the vector lattice of all regular orthogonally additive operators on $E$ which coincides with the band generated by the identity operator. We present a formula for the order projection onto this band and obtain an analytical representation for order continuous band preserving operators on the space of all measurable functions. Finally, we consider the procedure of extending a band preserving map from a lateral band to the whole space.
Keywords: orthogonally additive operator, band preserving operator, disjointness preserving operator, nonlinear superposition operator, vector lattice, lateral ideal, lateral band.
Received October 31, 2019, published May 14, 2021
Bibliographic databases:
Document Type: Article
UDC: 517.98, 519.46
MSC: 46B99, 47B38
Language: English
Citation: N. M. Abasov, “On band preserving orthogonally additive operators”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 495–510
Citation in format AMSBIB
\Bibitem{Aba21}
\by N.~M.~Abasov
\paper On band preserving orthogonally additive operators
\jour Sib. \`Elektron. Mat. Izv.
\yr 2021
\vol 18
\issue 1
\pages 495--510
\mathnet{http://mi.mathnet.ru/semr1376}
\crossref{https://doi.org/10.33048/semi.2021.18.036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000651770900001}
Linking options:
  • https://www.mathnet.ru/eng/semr1376
  • https://www.mathnet.ru/eng/semr/v18/i1/p495
  • This publication is cited in the following 6 articles:
    1. N. M. Abasov, N. A. Dzhusoeva, M. A. Pliev, “Diffuse orthogonally additive operators”, Sb. Math., 215:1 (2024), 1–27  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. N. A. Dzhusoeva, “On Disjointness-Preserving Biadditive Operators”, Math. Notes, 115:5 (2024), 719–733  mathnet  crossref  crossref  mathscinet
    3. N. A. Dzhusoeva, S. Yu. Itarova, M. A. Pliev, “Order Projection in ${\mathcal{O}\mathcal{A}}_{r}\left(E,F\right)$”, J Math Sci, 282:3 (2024), 321  crossref
    4. N. A. Dzhusoeva, S. Yu. Itarova, “On Orthogonally Additive Operators in Lattice-Normed Spaces”, Math. Notes, 113:1 (2023), 59–71  mathnet  crossref  crossref  mathscinet
    5. N. A. Dzhusoeva, S. Yu. Itarova, M. A. Pliev, “Order projection in $\mathcal{OA}_r(E,F)$”, CMFD, 68:3 (2022), 407–423  mathnet  mathnet  crossref
    6. Nonna Dzhusoeva, Ruslan Kulaev, Marat Pliev, Ismat Beg, “Orthogonally Biadditive Operators”, Journal of Function Spaces, 2021 (2021), 1  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:238
    Full-text PDF :107
    References:23
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025