Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2020, Volume 75, Issue 4, Pages 587–626
DOI: https://doi.org/10.1070/RM9957
(Mi rm9957)
 

This article is cited in 5 scientific papers (total in 5 papers)

Surveys

Spectral triangles of non-selfadjoint Hill and Dirac operators

P. B. Djakova, B. S. Mityaginb

a Sabanci University, Orhanli, Tuzla, Istanbul, Turkey
b The Ohio State University, Columbus, OH, USA
References:
Abstract: This is a survey of results from the last 10 to 12 years about the structure of the spectra of Hill–Schrödinger and Dirac operators. Let LL be a Hill operator or a one-dimensional Dirac operator on the interval [0,π][0,π]. If LL is considered with Dirichlet, periodic, or antiperiodic boundary conditions, then the corresponding spectra are discrete and, for sufficiently large |n||n|, close to n2n2 in the Hill case or close to nn in the Dirac case (nZ). There is one Dirichlet eigenvalue μn and two periodic (if n is even) or antiperiodic (if n is odd) eigenvalues λn and λ+n (counted with multiplicity). Asymptotic estimates are given for the spectral gaps γn=λ+nλn and the deviations δn=μnλ+n in terms of the Fourier coefficients of the potentials. Moreover, precise asymptotic expressions for γn and δn are found for special potentials that are trigonometric polynomials.
Bibliography: 45 titles.
Keywords: Hill operator, one-dimensional Dirac operator, periodic boundary conditions, antiperiodic boundary conditions, Dirichlet boundary conditions.
Funding agency
The second author thanks the Steklov Mathematical Institute of Russian Academy of Sciences for their help and support during his visit from September 16 to October 19, 2019, when the writing of this paper was at its final stage.
Received: 20.11.2019
Bibliographic databases:
Document Type: Article
UDC: 517.984
MSC: 47E05, 34L40, 34L10
Language: English
Original paper language: Russian
Citation: P. B. Djakov, B. S. Mityagin, “Spectral triangles of non-selfadjoint Hill and Dirac operators”, Russian Math. Surveys, 75:4 (2020), 587–626
Citation in format AMSBIB
\Bibitem{DjaMit20}
\by P.~B.~Djakov, B.~S.~Mityagin
\paper Spectral triangles of non-selfadjoint Hill and Dirac operators
\jour Russian Math. Surveys
\yr 2020
\vol 75
\issue 4
\pages 587--626
\mathnet{http://mi.mathnet.ru/eng/rm9957}
\crossref{https://doi.org/10.1070/RM9957}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4153698}
\zmath{https://zbmath.org/?q=an:7281941}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020RuMaS..75..587D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000586805800001}
\elib{https://elibrary.ru/item.asp?id=45177747}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85094937773}
Linking options:
  • https://www.mathnet.ru/eng/rm9957
  • https://doi.org/10.1070/RM9957
  • https://www.mathnet.ru/eng/rm/v75/i4/p3
  • This publication is cited in the following 5 articles:
    1. Anton A. Lunyov, Mark M. Malamud, “On the completeness property of root vector systems for 2 × 2 Dirac type operators with non-regular boundary conditions”, Journal of Mathematical Analysis and Applications, 543:2 (2025), 128949  crossref
    2. A. M. Savchuk, I. V. Sadovnichaya, “Operator group generated by a one-dimensional Dirac system”, Dokl. Math., 108:3 (2023), 490–492  mathnet  crossref  crossref  elib
    3. A. A. Lunyov, M. M. Malamud, “Stability of spectral characteristics of boundary value problems for $2\times2$ Dirac type systems. Applications to the damped string”, J. Differential Equations, 313 (2022), 633–742  crossref  mathscinet  isi
    4. A. A. Shkalikov, “Regular spectral problems for systems of ordinary differential equations of the first order”, Russian Math. Surveys, 76:5 (2021), 939–941  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. Oktay Veliev, Non-self-adjoint Schrödinger Operator with a Periodic Potential, 2021, 15  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:435
    Russian version PDF:62
    English version PDF:31
    References:64
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025