Loading [MathJax]/jax/output/SVG/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2013, Volume 68, Issue 1, Pages 69–116
DOI: https://doi.org/10.1070/RM2013v068n01ABEH004822
(Mi rm9505)
 

This article is cited in 85 scientific papers (total in 85 papers)

Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations

A. G. Baskakov

Voronezh State University
References:
Abstract: Many properties of solutions to linear differential equations with unbounded operator coefficients (their boundedness, almost periodicity, stability) are closely connected with the corresponding properties of the differential operator defining the equation and acting in an appropriate function space. The structure of the spectrum of this operator and whether it is invertible, correct, and Fredholm depend on the dimension of the kernel of the operator, the codimension of its range, and the existence of complemented subspaces. The notion of a state of a linear relation (multivalued linear operator) is introduced, and is associated with some properties of the kernel and range. A linear difference operator (difference relation) is assigned to the differential operator under consideration (or the corresponding equation), the sets of their states are proved to be the same, and necessary and sufficient conditions for them to have the Fredholm property are found. Criteria for the almost periodicity at infinity of solutions of differential equations are derived. In the proof of the main results, the property of exponential dichotomy of a family of evolution operators and the spectral theory of linear relations are heavily used.
Bibliography: 98 titles.
Keywords: linear differential operators, set of states of an operator, Fredholm operator, difference operators and difference relations, spectrum of an operator or linear relation, functions almost periodic at infinity.
Funding agency Grant number
Russian Foundation for Basic Research 10-01-00276
13-01-00378
Received: 31.10.2012
Bibliographic databases:
Document Type: Article
UDC: 517.937+517.983
MSC: Primary 34D09, 34G10, 47A25; Secondary 46B45, 46E15, 47A06, 47A53, 47D06
Language: English
Original paper language: Russian
Citation: A. G. Baskakov, “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Russian Math. Surveys, 68:1 (2013), 69–116
Citation in format AMSBIB
\Bibitem{Bas13}
\by A.~G.~Baskakov
\paper Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations
\jour Russian Math. Surveys
\yr 2013
\vol 68
\issue 1
\pages 69--116
\mathnet{http://mi.mathnet.ru/eng/rm9505}
\crossref{https://doi.org/10.1070/RM2013v068n01ABEH004822}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3088079}
\zmath{https://zbmath.org/?q=an:06170779}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013RuMaS..68...69B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000318537500002}
\elib{https://elibrary.ru/item.asp?id=20423479}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84877064058}
Linking options:
  • https://www.mathnet.ru/eng/rm9505
  • https://doi.org/10.1070/RM2013v068n01ABEH004822
  • https://www.mathnet.ru/eng/rm/v68/i1/p77
  • This publication is cited in the following 85 articles:
    1. A. B. Antonevich, “Right-Sided Invertibility of Binomial Functional Operators and Graded Dichotomy”, J Math Sci, 278:1 (2024), 12  crossref
    2. Mykhailo Horodnii, “Bounded Solutions of a Difference Equation with Piecewise Constant Operator Coefficients”, J Math Sci, 279:3 (2024), 330  crossref
    3. Mykhailo Horodnii, Oleksii Pecherytsia, “Bounded Solutions of a Second-Order Differential Equation with Piecewise-Constant Operator Coefficients”, J Math Sci, 282:6 (2024), 935  crossref
    4. A. G. Baskakov, G. V. Garkavenko, N. B. Uskova, L. N. Kostina, “Ob ekvivalentnykh operatorakh”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody kraevykh zadach. Pontryaginskie chteniya—XXXV», Voronezh, 26-30 aprelya 2024 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 235, VINITI RAN, M., 2024, 3–14  mathnet  crossref
    5. Vladislav Bruk, “Linear relations generated by integral equations with Nevanlinna operator measures”, Filomat, 38:4 (2024), 1153  crossref
    6. Mikhailo Gorodnіi, “Obmezhenі rozv'yazki rіznitsevogo rіvnyannya z kuskovo-stalimi operatornimi koєfіtsієntami”, Nelin. Kolyv., 26:2 (2023), 199  crossref
    7. Mikhailo Gorodnіi, Oleksіi Pecheritsya, “Obmezhenі rozv'yazki diferentsіalnogo rіvnyannya drugogo poryadku z kuskovo-stalimi operatornimi koefіtsієntami”, Nelin. Kolyv., 26:3 (2023), 342  crossref
    8. Jian Wei-Gang, Ding Hui-Sheng, “Loomis type 定理 on the half-line and its application”, Sci. Sin.-Math., 53:9 (2023), 1241  crossref
    9. M. F. Horodnii, O. A. Pecherytsia, “Bounded Solutions of a Differential Equation with Piecewise Constant Operator Coefficients”, J Math Sci, 270:2 (2023), 237  crossref
    10. Hui-Sheng Ding, Wei-Gang Jian, Nguyen Van Minh, Gaston M. N'Guérékata, “Kadets type and Loomis type theorems for asymptotically almost periodic functions”, Journal of Differential Equations, 373 (2023), 389  crossref
    11. Vladislav Bruk, “On characteristic functions of generalized resolvents generated by integral equations with operator measures”, Filomat, 37:23 (2023), 7699  crossref
    12. M. F. Horodnii, “Obmezhenі ta sumovnі rozv'yazki odnogo rіznitsevogo rіvnyannya z kuskovostalimi operatornimi koefіtsієntami”, Ukr. Mat. Zhurn., 74:7 (2022), 930  crossref
    13. I. I. Strukova, “On Some Properties of Functions Almost Periodic at Infinity from Homogeneous Spaces”, J Math Sci, 263:5 (2022), 643  crossref
    14. V. E. Strukov, “On Distributions That Are Almost Periodic at Infinity”, J Math Sci, 263:4 (2022), 511  crossref
    15. Vladislav Bruk, “Generalized resolvents of linear relations generated by integral equations with operator measures”, Filomat, 36:14 (2022), 4793  crossref
    16. M. F. Horodnii, “Bounded and Summable Solutions of a Difference Equation with Piecewise-Constant Operator Coefficients”, Ukr Math J, 74:7 (2022), 1063  crossref
    17. I. A. Vysotskaya, I. I. Strukova, “Issledovanie nekotorykh klassov pochti periodicheskikh na beskonechnosti funktsii”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 21:1 (2021), 4–14  mathnet  crossref
    18. A. B. Antonevich, “Pravostoronnyaya obratimost dvuchlennykh funktsionalnykh operatorov i graduirovannaya dikhotomiya”, Posvyaschaetsya pamyati professora N.D. Kopachevskogo, SMFN, 67, no. 2, Rossiiskii universitet druzhby narodov, M., 2021, 208–236  mathnet  crossref
    19. I. I. Strukova, “Garmonicheskii analiz pochti periodicheskikh na beskonechnosti funktsii v banakhovykh modulyakh”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 21:4 (2021), 448–457  mathnet  crossref
    20. Bruk V.M., “Invertible Linear Relations Generated By Integral Equations With Operator Measures”, Filomat, 35:5 (2021), 1589–1607  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:3288
    Russian version PDF:599
    English version PDF:101
    References:213
    First page:167
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025