Abstract:
The present paper proposes new integral representations of g-Whittaker functions corresponding to an arbitrary semisimple Lie algebra g with the integrand expressed in terms of matrix elements of the fundamental representations of g. For the classical Lie algebras sp2ℓ, so2ℓ, and so2ℓ+1 a modification of this construction is proposed, providing a direct generalization of the integral representation of glℓ+1-Whittaker functions first introduced by Givental. The Givental representation has a recursive structure with respect to the rank ℓ+1 of the Lie algebra glℓ+1, and the proposed generalization to all classical Lie algebras retains this property. It was observed elsewhere that an integral recursion operator for the glℓ+1-Whittaker function in the Givental representation coincides with a degeneration of the Baxter Q-operator for ^glℓ+1-Toda chains. In this paper Q-operators for the affine Lie algebras ^so2ℓ, ^so2ℓ+1 and a twisted form of ^gl2ℓ are constructed. It is then demonstrated that the relation between integral recursion operators for the generalized Givental representations and degenerate Q-operators remains valid for all classical Lie algebras.
Bibliography: 33 titles.
Keywords:
Whittaker function, Toda chain, Baxter operator.
Citation:
A. A. Gerasimov, D. R. Lebedev, S. V. Oblezin, “New integral representations of Whittaker functions for classical Lie groups”, Russian Math. Surveys, 67:1 (2012), 1–92
\Bibitem{GerLebObl12}
\by A.~A.~Gerasimov, D.~R.~Lebedev, S.~V.~Oblezin
\paper New integral representations of Whittaker functions for classical Lie groups
\jour Russian Math. Surveys
\yr 2012
\vol 67
\issue 1
\pages 1--92
\mathnet{http://mi.mathnet.ru/eng/rm9463}
\crossref{https://doi.org/10.1070/RM2012v067n01ABEH004776}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2961467}
\zmath{https://zbmath.org/?q=an:1267.17007}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012RuMaS..67....1G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303447100001}
\elib{https://elibrary.ru/item.asp?id=20423425}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860842553}
Linking options:
https://www.mathnet.ru/eng/rm9463
https://doi.org/10.1070/RM2012v067n01ABEH004776
https://www.mathnet.ru/eng/rm/v67/i1/p3
This publication is cited in the following 20 articles:
Thomas Lam, Nicolas Templier, “The mirror conjecture for minuscule flag varieties”, Duke Math. J., 173:1 (2024)
A. Galiullin, S. Khoroshkin, M. Lyachko, “Zhelobenko–Stern formulas and Bn Toda wave functions”, Lett Math Phys, 114:3 (2024)
A. A. Gerasimov, D. R. Lebedev, S. V. Oblezin, “On a matrix element representation of the GKZ hypergeometric functions”, Lett Math Phys, 113:2 (2023)
Guillaume Barraquand, Shouda Wang, “An Identity in Distribution Between Full-Space and Half-Space Log-Gamma Polymers”, International Mathematics Research Notices, 2023:14 (2023), 11877
Mucciconi M., Petrov L., “Spin Q-Whittaker Polynomials and Deformed Quantum Toda”, Commun. Math. Phys., 389:3 (2022), 1331–1416
A. A. Gerasimov, D. R. Lebedev, S. V. Oblezin, “On the quantum osp(1|2ℓ) Toda chain”, Theoret. and Math. Phys., 208:2 (2021), 1004–1017
Michael Semenov-Tian-Shansky, Proceedings of Symposia in Pure Mathematics, 103.1, Integrability, Quantization, and Geometry, 2021, 403
van Diejen J.F., Emsiz E., “Wave Functions For Quantum Integrable Particle Systems Via Partial Confluences of Multivariate Hypergeometric Functions”, J. Differ. Equ., 268:8 (2020), 4525–4543
Brumley F. Templier N., “Large Values of Cusp Forms on Gl(N)”, Sel. Math.-New Ser., 26:4 (2020), 63
Bisi E., Zygouras N., “Point-to-Line Polymers and Orthogonal Whittaker Functions”, Trans. Am. Math. Soc., 371:12 (2019), 8339–8379
van Diejen J.F., Emsiz E., “Bispectral Dual Difference Equations For the Quantum Toda Chain With Boundary Perturbations”, Int. Math. Res. Notices, 2019:12 (2019), 3740–3767
Goncharov A., Shen L., “Geometry of Canonical Bases and Mirror Symmetry”, 202, no. 2, 2015, 487–633
T. Ishii, T. Oda, “Calculus of principal series Whittaker functions on SL(n,R)”, J. Funct. Anal., 266:3 (2014), 1286–1372
A. A. Gerasimov, D. R. Lebedev, “Representation theory over tropical semifield and Langlands duality”, Comm. Math. Phys., 320:2 (2013), 301–346
I. Cherednik, Ma Xiaoguang, “Spherical and Whittaker functions via DAHA II”, Selecta Math. (N.S.), 19:3 (2013), 819–864
A. Gerasimov, D. Lebedev, S. Oblezin, “On a classical limit of q-deformed Whittaker functions”, Lett. Math. Phys., 100:3 (2012), 279–290
N. O'Connell, “Directed polymers and the quantum Toda lattice”, Ann. Probab., 40:2 (2012), 437–458