Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2012, Volume 67, Issue 1, Pages 1–92
DOI: https://doi.org/10.1070/RM2012v067n01ABEH004776
(Mi rm9463)
 

This article is cited in 20 scientific papers (total in 20 papers)

New integral representations of Whittaker functions for classical Lie groups

A. A. Gerasimovab, D. R. Lebedeva, S. V. Oblezina

a Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center), Moscow
b The Hamilton Mathematics Institute, Trinity College Dublin, Ireland
References:
Abstract: The present paper proposes new integral representations of g-Whittaker functions corresponding to an arbitrary semisimple Lie algebra g with the integrand expressed in terms of matrix elements of the fundamental representations of g. For the classical Lie algebras sp2, so2, and so2+1 a modification of this construction is proposed, providing a direct generalization of the integral representation of gl+1-Whittaker functions first introduced by Givental. The Givental representation has a recursive structure with respect to the rank +1 of the Lie algebra gl+1, and the proposed generalization to all classical Lie algebras retains this property. It was observed elsewhere that an integral recursion operator for the gl+1-Whittaker function in the Givental representation coincides with a degeneration of the Baxter Q-operator for ^gl+1-Toda chains. In this paper Q-operators for the affine Lie algebras ^so2, ^so2+1 and a twisted form of ^gl2 are constructed. It is then demonstrated that the relation between integral recursion operators for the generalized Givental representations and degenerate Q-operators remains valid for all classical Lie algebras.
Bibliography: 33 titles.
Keywords: Whittaker function, Toda chain, Baxter operator.
Received: 14.07.2011
Bibliographic databases:
Document Type: Article
UDC: 517.986.68+517.912+519.4
MSC: Primary 22E45; Secondary 17B80, 37J35
Language: English
Original paper language: Russian
Citation: A. A. Gerasimov, D. R. Lebedev, S. V. Oblezin, “New integral representations of Whittaker functions for classical Lie groups”, Russian Math. Surveys, 67:1 (2012), 1–92
Citation in format AMSBIB
\Bibitem{GerLebObl12}
\by A.~A.~Gerasimov, D.~R.~Lebedev, S.~V.~Oblezin
\paper New integral representations of Whittaker functions for classical Lie groups
\jour Russian Math. Surveys
\yr 2012
\vol 67
\issue 1
\pages 1--92
\mathnet{http://mi.mathnet.ru/eng/rm9463}
\crossref{https://doi.org/10.1070/RM2012v067n01ABEH004776}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2961467}
\zmath{https://zbmath.org/?q=an:1267.17007}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012RuMaS..67....1G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303447100001}
\elib{https://elibrary.ru/item.asp?id=20423425}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860842553}
Linking options:
  • https://www.mathnet.ru/eng/rm9463
  • https://doi.org/10.1070/RM2012v067n01ABEH004776
  • https://www.mathnet.ru/eng/rm/v67/i1/p3
  • This publication is cited in the following 20 articles:
    1. Thomas Lam, Nicolas Templier, “The mirror conjecture for minuscule flag varieties”, Duke Math. J., 173:1 (2024)  crossref
    2. A. Galiullin, S. Khoroshkin, M. Lyachko, “Zhelobenko–Stern formulas and Bn Toda wave functions”, Lett Math Phys, 114:3 (2024)  crossref
    3. A. A. Gerasimov, D. R. Lebedev, S. V. Oblezin, “On a matrix element representation of the GKZ hypergeometric functions”, Lett Math Phys, 113:2 (2023)  crossref
    4. Guillaume Barraquand, Shouda Wang, “An Identity in Distribution Between Full-Space and Half-Space Log-Gamma Polymers”, International Mathematics Research Notices, 2023:14 (2023), 11877  crossref
    5. Mucciconi M., Petrov L., “Spin Q-Whittaker Polynomials and Deformed Quantum Toda”, Commun. Math. Phys., 389:3 (2022), 1331–1416  crossref  mathscinet  isi
    6. Nikos Zygouras, “Some algebraic structures in KPZ universality”, Probab. Surveys, 19:none (2022)  crossref
    7. A. A. Gerasimov, D. R. Lebedev, S. V. Oblezin, “On the quantum osp(1|2) Toda chain”, Theoret. and Math. Phys., 208:2 (2021), 1004–1017  mathnet  crossref  crossref  adsnasa  isi  elib
    8. Michael Semenov-Tian-Shansky, Proceedings of Symposia in Pure Mathematics, 103.1, Integrability, Quantization, and Geometry, 2021, 403  crossref
    9. van Diejen J.F., Emsiz E., “Wave Functions For Quantum Integrable Particle Systems Via Partial Confluences of Multivariate Hypergeometric Functions”, J. Differ. Equ., 268:8 (2020), 4525–4543  crossref  mathscinet  isi
    10. Brumley F. Templier N., “Large Values of Cusp Forms on Gl(N)”, Sel. Math.-New Ser., 26:4 (2020), 63  crossref  mathscinet  isi
    11. Kharchev S., Khoroshkin S., “Mellin-Barnes Presentations For Whittaker Wave Functions”, Adv. Math., 375 (2020), 107368  crossref  mathscinet  isi
    12. Bisi E., Zygouras N., “Point-to-Line Polymers and Orthogonal Whittaker Functions”, Trans. Am. Math. Soc., 371:12 (2019), 8339–8379  crossref  mathscinet  isi  scopus
    13. van Diejen J.F., Emsiz E., “Bispectral Dual Difference Equations For the Quantum Toda Chain With Boundary Perturbations”, Int. Math. Res. Notices, 2019:12 (2019), 3740–3767  crossref  mathscinet  isi
    14. Goncharov A., Shen L., “Geometry of Canonical Bases and Mirror Symmetry”, 202, no. 2, 2015, 487–633  crossref  mathscinet  zmath  isi  scopus
    15. T. Ishii, T. Oda, “Calculus of principal series Whittaker functions on SL(n,R)”, J. Funct. Anal., 266:3 (2014), 1286–1372  crossref  mathscinet  zmath  isi  elib  scopus
    16. A. A. Gerasimov, D. R. Lebedev, “Representation theory over tropical semifield and Langlands duality”, Comm. Math. Phys., 320:2 (2013), 301–346  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    17. I. Cherednik, Ma Xiaoguang, “Spherical and Whittaker functions via DAHA II”, Selecta Math. (N.S.), 19:3 (2013), 819–864  crossref  mathscinet  zmath  isi  scopus
    18. A. Gerasimov, D. Lebedev, S. Oblezin, “On a classical limit of q-deformed Whittaker functions”, Lett. Math. Phys., 100:3 (2012), 279–290  crossref  mathscinet  zmath  isi  elib  scopus
    19. N. O'Connell, “Directed polymers and the quantum Toda lattice”, Ann. Probab., 40:2 (2012), 437–458  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1368
    Russian version PDF:398
    English version PDF:63
    References:112
    First page:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025