\Bibitem{Pan96}
\by T.~E.~Panov
\paper On the structure of a~Hopf cohomology 2-algebra of four-dimensional manifolds
\jour Russian Math. Surveys
\yr 1996
\vol 51
\issue 1
\pages 155--157
\mathnet{http://mi.mathnet.ru/eng/rm933}
\crossref{https://doi.org/10.1070/RM1996v051n01ABEH002759}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1392685}
\zmath{https://zbmath.org/?q=an:0874.57031}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1996RuMaS..51..155P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VC24300014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030505868}
Linking options:
https://www.mathnet.ru/eng/rm933
https://doi.org/10.1070/RM1996v051n01ABEH002759
https://www.mathnet.ru/eng/rm/v51/i1/p161
This publication is cited in the following 5 articles:
V. M. Buchstaber, A. P. Veselov, A. A. Gaifullin, “Classification of involutive commutative two-valued groups”, Russian Math. Surveys, 77:4 (2022), 651–727
D. V. Gugnin, “Any Suspension and Any Homology Sphere Are 2H-Spaces”, Proc. Steklov Inst. Math., 318 (2022), 45–58
D. V. Gugnin, “Topological applications of graded Frobenius n-homomorphisms”, Trans. Moscow Math. Soc., 72 (2011), 97–142
V. M. Buchstaber, “n-valued groups: theory and applications”, Mosc. Math. J., 6:1 (2006), 57–84
V. M. Buchstaber, E. G. Rees, “Multivalued groups, their representations and Hopf algebras”, Transformation Groups, 2:4 (1997), 325