Citation:
S. P. Novikov, I. A. Dynnikov, “Discrete spectral symmetries of low-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds”, Russian Math. Surveys, 52:5 (1997), 1057–1116
\Bibitem{NovDyn97}
\by S.~P.~Novikov, I.~A.~Dynnikov
\paper Discrete spectral symmetries of low-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds
\jour Russian Math. Surveys
\yr 1997
\vol 52
\issue 5
\pages 1057--1116
\mathnet{http://mi.mathnet.ru/eng/rm889}
\crossref{https://doi.org/10.1070/RM1997v052n05ABEH002105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1490030}
\zmath{https://zbmath.org/?q=an:0928.35107}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1997RuMaS..52.1057N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000073817000008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031351831}
Linking options:
https://www.mathnet.ru/eng/rm889
https://doi.org/10.1070/RM1997v052n05ABEH002105
https://www.mathnet.ru/eng/rm/v52/i5/p175
This publication is cited in the following 69 articles:
I T Habibullin, K I Faizulina, A R Khakimova, “Laplace transformations and sine-Gordon type integrable PDE”, J. Phys. A: Math. Theor., 57:1 (2024), 015203
A R Khakimova, K I Faizulina, “Reduction of the Laplace sequence and sine-Gordon type equations”, J. Phys. A: Math. Theor., 57:49 (2024), 495208
Ufa Math. J., 13:2 (2021), 160–169
Habibullin I., Khakimova A., “Integrable Boundary Conditions For the Hirota-Miwa Equation and Lie Algebras”, J. Nonlinear Math. Phys., 27:3 (2020), 393–413
Ekaterina Shemyakova, “Classification of Darboux transformations for operators of the form ∂x∂y+a∂x+b∂y+c”, Illinois J. Math., 64:1 (2020)
Habibullin I.T., Khakimova A.R., “Discrete Exponential Type Systems on a Quad Graph, Corresponding to the Affine Lie Algebras a(N)(-1)((1) )”, J. Phys. A-Math. Theor., 52:36 (2019), 365202
David Hobby, Ekaterina Shemyakova, “Classification of Multidimensional Darboux Transformations: First Order and Continued Type”, SIGMA, 13 (2017), 010, 20 pp.
Li S. Shemyakova E. Voronov T., “Differential Operators on the Superline, Berezinians, and Darboux Transformations”, Lett. Math. Phys., 107:9 (2017), 1689–1714
A. L. Skubachevskii, “Boundary-value problems for elliptic functional-differential equations and their applications”, Russian Math. Surveys, 71:5 (2016), 801–906
I. A. Dynnikov, “On a new discretization of complex analysis”, Russian Math. Surveys, 70:6 (2015), 1031–1050
N. Yu. Erokhovets, “Buchstaber invariant theory of simplicial complexes and convex polytopes”, Proc. Steklov Inst. Math., 286 (2014), 128–187
P. G. Grinevich, S. P. Novikov, “Discrete SLn-connections and self-adjoint difference operators on two-dimensional manifolds”, Russian Math. Surveys, 68:5 (2013), 861–887
Kh. K. Ishkin, “Conditions for localization of the limit spectrum of a model operator associated with the Orr–Sommerfeld equation”, Dokl. Math, 86:1 (2012), 549
Rustem Garifullin, Ismagil Habibullin, Marina Yangubaeva, “Affine and finite Lie algebras and integrable Toda field equations on discrete space-time”, SIGMA, 8 (2012), 062, 33 pp.
Proc. Steklov Inst. Math., 273 (2011), 238–251
Hugo M. Campos, Raúl Castillo-Pérez, Vladislav V. Kravchenko, “Construction and application of Bergman-type reproducing kernels for boundary and eigenvalue problems in the plane”, Complex Variables and Elliptic Equations, 2011, 1
V. E. Adler, A. I. Bobenko, Y. B. Suris, “Classification of Integrable Discrete Equations of Octahedron Type”, International Mathematics Research Notices, 2011
V. L. Vereshchagin, “Discrete Toda lattices and the Laplace method”, Theoret. and Math. Phys., 160:3 (2009), 1229–1237
A. A. Gaifullin, “A Minimal Triangulation of Complex Projective Plane Admitting a Chess Colouring of Four-Dimensional Simplices”, Proc. Steklov Inst. Math., 266 (2009), 29–48
Adam Doliwa, Maciej Nieszporski, “Darboux transformations for linear operators on two-dimensional regular lattices”, J Phys A Math Theor, 42:45 (2009), 454001