Citation:
V. V. Belokurov, Yu. P. Solov'ev, E. T. Shavgulidze, “Perturbation theory with convergent series for functional integrals with respect to the Feynman measure”, Russian Math. Surveys, 52:2 (1997), 392–393
\Bibitem{BelSolSha97}
\by V.~V.~Belokurov, Yu.~P.~Solov'ev, E.~T.~Shavgulidze
\paper Perturbation theory with convergent series for functional integrals with respect to the Feynman measure
\jour Russian Math. Surveys
\yr 1997
\vol 52
\issue 2
\pages 392--393
\mathnet{http://mi.mathnet.ru/eng/rm828}
\crossref{https://doi.org/10.1070/RM1997v052n02ABEH001785}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1480147}
\zmath{https://zbmath.org/?q=an:0919.28009}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1997RuMaS..52..392B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XZ29900016}
Linking options:
https://www.mathnet.ru/eng/rm828
https://doi.org/10.1070/RM1997v052n02ABEH001785
https://www.mathnet.ru/eng/rm/v52/i2/p155
This publication is cited in the following 8 articles:
Ivanov A.S., Sazonov V.K., “Convergent series for lattice models with polynomial interactions”, Nucl. Phys. B, 914 (2017), 43–61
Sazonov V.K., “Convergent perturbation theory for lattice models with fermions”, Int. J. Mod. Phys. A, 31:13 (2016), 1650072
“Introduction”, Mathematical Theory of Feynman Path Integrals: An Introduction, 523 (2008), 1
Drensky V., “Polynomial identity rings - Part A - Combinatorial aspects in PI-rings”, Polynomial Identity Rings, Advanced Courses in Mathematics Crm Barcelona, 2004, 1
Belokurov, VV, “New perturbation theory for quantum field theory: Convergent series instead of asymptotic expansions”, Acta Applicandae Mathematicae, 68:1–3 (2001), 71
Belokurov, VV, “A method of summation of divergent series to any accuracy”, Mathematical Notes, 68:1–2 (2000), 22
V. V. Belokurov, Yu. P. Solov'ev, E. T. Shavgulidze, “Perturbation theory with convergent series for calculating physical quantities specified by finitely many terms of a divergent series in traditional perturbation theory”, Theoret. and Math. Phys., 123:3 (2000), 792–800