Citation:
R. De Leo, I. A. Dynnikov, “An example of a fractal set of plane directions having chaotic intersections with a fixed 3-periodic surface”, Russian Math. Surveys, 62:5 (2007), 990–992
\Bibitem{De Dyn07}
\by R.~De Leo, I.~A.~Dynnikov
\paper An example of a~fractal set of plane directions having chaotic intersections with a~fixed 3-periodic surface
\jour Russian Math. Surveys
\yr 2007
\vol 62
\issue 5
\pages 990--992
\mathnet{http://mi.mathnet.ru/eng/rm8149}
\crossref{https://doi.org/10.1070/RM2007v062n05ABEH004461}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2373758}
\zmath{https://zbmath.org/?q=an:1149.28301}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007RuMaS..62..990D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000253899500010}
\elib{https://elibrary.ru/item.asp?id=25787460}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-40749108075}
Linking options:
https://www.mathnet.ru/eng/rm8149
https://doi.org/10.1070/RM2007v062n05ABEH004461
https://www.mathnet.ru/eng/rm/v62/i5/p151
This publication is cited in the following 18 articles:
A. Ya. Maltsev, S. P. Novikov, “Topology of dynamical systems on the Fermi surface and galvanomagnetic phenomena in normal metals”, Journal of Mathematical Physics, 65:7 (2024)
A. Ya. Maltsev, “On the Novikov Problem with a Large Number of Quasiperiods and Its Generalizations”, Proc. Steklov Inst. Math., 325 (2024), 163–176
A. Ya. Mal'tsev, “OSOBENNOSTI τ -PRIBLIZhENIYa DLYa KhAOTIChESKIKh ELEKTRONNYKh TRAEKTORIY NA SLOZhNYKh POVERKhNOSTYaKh FERMI”, Žurnal èksperimentalʹnoj i teoretičeskoj fiziki, 166:3 (2024)
A. Ya Mal'tsev, “Perekhody Lifshitsa i uglovye diagrammy provodimosti v metallakh so slozhnymi poverkhnostyami Fermi”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 164:5 (2023), 817
A. Ya. Maltsev, “Lifshitz Transitions and Angular Conductivity Diagrams in Metals with Complex Fermi Surfaces”, J. Exp. Theor. Phys., 137:5 (2023), 706
I. A. Dynnikov, A. Ya. Mal'tsev, S. P. Novikov, “Geometry of quasiperiodic functions on the plane”, Russian Math. Surveys, 77:6 (2022), 1061–1085
I. A. Dynnikov, A. Ya. Mal'tsev, S. P. Novikov, “Chaotic trajectories on fermi surfaces and nontrivial modes of behavior of magnetic conductivity”, J. Exp. Theor. Phys., 135 (2022), 240–254
A. Ya. Maltsev, S. P. Novikov, “Open level lines of a superposition of periodic potentials on a plane”, Ann. Physics, 447 (2022), 169039–11
Dynnikov I., Maltsev A., “Features of the Motion of Ultracold Atoms in Quasiperiodic Potentials”, J. Exp. Theor. Phys., 133:6 (2021), 711–736
Maltsev A.Ya., “Reconstructions of the Electron Dynamics in Magnetic Field and the Geometry of Complex Fermi Surfaces”, J. Exp. Theor. Phys., 131:6 (2020), 988–1020
A. Ya. Maltsev, S. P. Novikov, “Topological integrability, classical and quantum chaos, and the theory of dynamical systems in the physics of condensed matter”, Russian Math. Surveys, 74:1 (2019), 141–173
Maltsev A.Ya., “the Complexity Classes of Angular Diagrams of the Metal Conductivity in Strong Magnetic Fields”, J. Exp. Theor. Phys., 129:1 (2019), 116–138
Novikov S.P. De Leo R. Dynnikov I.A. Maltsev A.Ya., “Theory of Dynamical Systems and Transport Phenomena in Normal Metals”, J. Exp. Theor. Phys., 129:4, SI (2019), 710–721
De Leo R., “A Survey on Quasiperiodic Topology”, Advanced Mathematical Methods in Biosciences and Applications, Steam-H Science Technology Engineering Agriculture Mathematics & Health, ed. Berezovskaya F. Toni B., Springer International Publishing Ag, 2019, 53–88
A. Ya. Maltsev, S. P. Novikov, “The theory of closed 1-forms, levels of quasiperiodic functions and transport phenomena in electron systems”, Proc. Steklov Inst. Math., 302 (2018), 279–297
Maltsev A.Ya., “The Second Boundaries of Stability Zones and the Angular Diagrams of Conductivity For Metals Having Complicated Fermi Surfaces”, J. Exp. Theor. Phys., 127:6 (2018), 1087–1111
Maltsev A.Ya., “Oscillation Phenomena and Experimental Determination of Exact Mathematical Stability Zones For Magneto-Conductivity in Metals Having Complicated Fermi Surfaces”, J. Exp. Theor. Phys., 125:5 (2017), 896–905
Maltsev A.Ya., “On the Analytical Properties of the Magneto-Conductivity in the Case of Presence of Stable Open Electron Trajectories on a Complex Fermi Surface”, J. Exp. Theor. Phys., 124:5 (2017), 805–831