Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2007, Volume 62, Issue 5, Pages 990–992
DOI: https://doi.org/10.1070/RM2007v062n05ABEH004461
(Mi rm8149)
 

This article is cited in 18 scientific papers (total in 18 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

An example of a fractal set of plane directions having chaotic intersections with a fixed 3-periodic surface

R. De Leoa, I. A. Dynnikovb

a INFN — National Institute of Nuclear Physics, Sezione di Cagliari
b M. V. Lomonosov Moscow State University
References:
Presented: S. P. Novikov
Accepted: 20.08.2007
Bibliographic databases:
Document Type: Article
MSC: Primary 57R30; Secondary 28A80
Language: English
Original paper language: Russian
Citation: R. De Leo, I. A. Dynnikov, “An example of a fractal set of plane directions having chaotic intersections with a fixed 3-periodic surface”, Russian Math. Surveys, 62:5 (2007), 990–992
Citation in format AMSBIB
\Bibitem{De Dyn07}
\by R.~De Leo, I.~A.~Dynnikov
\paper An example of a~fractal set of plane directions having chaotic intersections with a~fixed 3-periodic surface
\jour Russian Math. Surveys
\yr 2007
\vol 62
\issue 5
\pages 990--992
\mathnet{http://mi.mathnet.ru/eng/rm8149}
\crossref{https://doi.org/10.1070/RM2007v062n05ABEH004461}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2373758}
\zmath{https://zbmath.org/?q=an:1149.28301}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007RuMaS..62..990D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000253899500010}
\elib{https://elibrary.ru/item.asp?id=25787460}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-40749108075}
Linking options:
  • https://www.mathnet.ru/eng/rm8149
  • https://doi.org/10.1070/RM2007v062n05ABEH004461
  • https://www.mathnet.ru/eng/rm/v62/i5/p151
  • This publication is cited in the following 18 articles:
    1. A. Ya. Maltsev, S. P. Novikov, “Topology of dynamical systems on the Fermi surface and galvanomagnetic phenomena in normal metals”, Journal of Mathematical Physics, 65:7 (2024)  crossref
    2. A. Ya. Maltsev, “On the Novikov Problem with a Large Number of Quasiperiods and Its Generalizations”, Proc. Steklov Inst. Math., 325 (2024), 163–176  mathnet  crossref  crossref  zmath
    3. A. Ya. Mal'tsev, “OSOBENNOSTI τ -PRIBLIZhENIYa DLYa KhAOTIChESKIKh ELEKTRONNYKh TRAEKTORIY NA SLOZhNYKh POVERKhNOSTYaKh FERMI”, Žurnal èksperimentalʹnoj i teoretičeskoj fiziki, 166:3 (2024)  crossref
    4. A. Ya Mal'tsev, “Perekhody Lifshitsa i uglovye diagrammy provodimosti v metallakh so slozhnymi poverkhnostyami Fermi”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 164:5 (2023), 817  crossref
    5. A. Ya. Maltsev, “Lifshitz Transitions and Angular Conductivity Diagrams in Metals with Complex Fermi Surfaces”, J. Exp. Theor. Phys., 137:5 (2023), 706  crossref
    6. I. A. Dynnikov, A. Ya. Mal'tsev, S. P. Novikov, “Geometry of quasiperiodic functions on the plane”, Russian Math. Surveys, 77:6 (2022), 1061–1085  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. I. A. Dynnikov, A. Ya. Mal'tsev, S. P. Novikov, “Chaotic trajectories on fermi surfaces and nontrivial modes of behavior of magnetic conductivity”, J. Exp. Theor. Phys., 135 (2022), 240–254  mathnet  mathnet  crossref  crossref
    8. A. Ya. Maltsev, S. P. Novikov, “Open level lines of a superposition of periodic potentials on a plane”, Ann. Physics, 447 (2022), 169039–11  mathnet  crossref  isi
    9. Dynnikov I., Maltsev A., “Features of the Motion of Ultracold Atoms in Quasiperiodic Potentials”, J. Exp. Theor. Phys., 133:6 (2021), 711–736  crossref  mathscinet  isi
    10. Maltsev A.Ya., “Reconstructions of the Electron Dynamics in Magnetic Field and the Geometry of Complex Fermi Surfaces”, J. Exp. Theor. Phys., 131:6 (2020), 988–1020  crossref  isi  scopus
    11. A. Ya. Maltsev, S. P. Novikov, “Topological integrability, classical and quantum chaos, and the theory of dynamical systems in the physics of condensed matter”, Russian Math. Surveys, 74:1 (2019), 141–173  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. Maltsev A.Ya., “the Complexity Classes of Angular Diagrams of the Metal Conductivity in Strong Magnetic Fields”, J. Exp. Theor. Phys., 129:1 (2019), 116–138  crossref  isi
    13. Novikov S.P. De Leo R. Dynnikov I.A. Maltsev A.Ya., “Theory of Dynamical Systems and Transport Phenomena in Normal Metals”, J. Exp. Theor. Phys., 129:4, SI (2019), 710–721  crossref  mathscinet  isi
    14. De Leo R., “A Survey on Quasiperiodic Topology”, Advanced Mathematical Methods in Biosciences and Applications, Steam-H Science Technology Engineering Agriculture Mathematics & Health, ed. Berezovskaya F. Toni B., Springer International Publishing Ag, 2019, 53–88  crossref  mathscinet  isi
    15. A. Ya. Maltsev, S. P. Novikov, “The theory of closed 1-forms, levels of quasiperiodic functions and transport phenomena in electron systems”, Proc. Steklov Inst. Math., 302 (2018), 279–297  mathnet  crossref  crossref  mathscinet  isi  elib
    16. Maltsev A.Ya., “The Second Boundaries of Stability Zones and the Angular Diagrams of Conductivity For Metals Having Complicated Fermi Surfaces”, J. Exp. Theor. Phys., 127:6 (2018), 1087–1111  crossref  isi  scopus
    17. Maltsev A.Ya., “Oscillation Phenomena and Experimental Determination of Exact Mathematical Stability Zones For Magneto-Conductivity in Metals Having Complicated Fermi Surfaces”, J. Exp. Theor. Phys., 125:5 (2017), 896–905  crossref  isi  scopus
    18. Maltsev A.Ya., “On the Analytical Properties of the Magneto-Conductivity in the Case of Presence of Stable Open Electron Trajectories on a Complex Fermi Surface”, J. Exp. Theor. Phys., 124:5 (2017), 805–831  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:684
    Russian version PDF:240
    English version PDF:15
    References:83
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025