Loading [MathJax]/jax/output/SVG/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1997, Volume 52, Issue 1, Pages 1–72
DOI: https://doi.org/10.1070/RM1997v052n01ABEH001736
(Mi rm806)
 

This article is cited in 36 scientific papers (total in 36 papers)

Existence and asymptotics of poles with small imaginary part for the Helmholtz resonator

R. R. Gadyl'shin

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
References:
Received: 18.09.1995
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 35J05, 35J45
Language: English
Original paper language: Russian
Citation: R. R. Gadyl'shin, “Existence and asymptotics of poles with small imaginary part for the Helmholtz resonator”, Russian Math. Surveys, 52:1 (1997), 1–72
Citation in format AMSBIB
\Bibitem{Gad97}
\by R.~R.~Gadyl'shin
\paper Existence and asymptotics of poles with small imaginary part for the Helmholtz resonator
\jour Russian Math. Surveys
\yr 1997
\vol 52
\issue 1
\pages 1--72
\mathnet{http://mi.mathnet.ru/eng/rm806}
\crossref{https://doi.org/10.1070/RM1997v052n01ABEH001736}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1453567}
\zmath{https://zbmath.org/?q=an:0902.35025}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1997RuMaS..52....1G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XP14100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031489587}
Linking options:
  • https://www.mathnet.ru/eng/rm806
  • https://doi.org/10.1070/RM1997v052n01ABEH001736
  • https://www.mathnet.ru/eng/rm/v52/i1/p3
  • This publication is cited in the following 36 articles:
    1. I. Y. Popov, I. V. Blinova, A. I. Popov, “Completeness of Resonance States and Weyl Asymptotics of Resonances for Quantum Graphs”, Complex Anal. Oper. Theory, 19:3 (2025)  crossref
    2. A. G. Belolipetskaia, I. Yu. Popov, “Influence of quantum graph parameters on the asymptotics of the number of resonances”, Chelyab. fiz.-matem. zhurn., 9:4 (2024), 682–688  mathnet  crossref
    3. E. S. Trifanova, A. S. Bagmutov, V. G. Katasonov, I. Yu. Popov, “Asymptotic expansions of resonances for waveguides coupled through converging windows”, Chelyab. fiz.-matem. zhurn., 8:1 (2023), 72–82  mathnet  crossref  mathscinet
    4. A. S. Bagmutov, E. S. Trifanova, I. Y. Popov, “Resonator with a Sorrugated Boundary: Numerical Results”, Phys. Part. Nuclei Lett., 20:2 (2023), 96  crossref
    5. M. J. A. Smith, P. A. Cotterill, D. Nigro, W. J. Parnell, I. D. Abrahams, “Asymptotics of the meta-atom: plane wave scattering by a single Helmholtz resonator”, Phil. Trans. R. Soc. A., 380:2237 (2022)  crossref
    6. Belolipetskaya A.G., Boitsev A.A., Fassari S., Popov I.Y., “3D Helmholtz Resonator With Two Close Point-Like Windows: Regularisation For Dirichlet Case”, Int. J. Geom. Methods Mod. Phys., 18:10 (2021), 2150153  crossref  isi
    7. Vorobiev A.M., “Resonance Asymptotics For Quantum Waveguides With Semitransparent Multi-Perforated Wall”, Nanosyst.-Phys. Chem. Math., 12:4 (2021), 462–471  crossref  isi
    8. Blinova V I., Popov I.Y., Popov I A., “Resonance States Completeness For Relativistic Particle on a Sphere With Two Semi-Infinite Lines Attached”, J. King Saud Univ. Sci., 32:1 (2020), 836–841  crossref  isi
    9. Vorobiev A.M., Trifanova E.S., Popov I.Y., “Resonance Asymptotics For a Pair Quantum Waveguides With Common Semitransparent Perforated Wall”, Nanosyst.-Phys. Chem. Math., 11:6 (2020), 619–627  crossref  isi
    10. V. Kozlov, J. Rossmann, “On the Nonstationary Stokes System in a Cone ($L_p$ Theory)”, J. Math. Fluid Mech., 22:3 (2020)  crossref
    11. Gerasimov D., Popov I., Blinova I., Popov A., “Incompleteness of Resonance States For Quantum Ring With Two Semi-Infinite Edges”, Anal. Math. Phys., 9:3 (2019), 1287–1302  crossref  isi
    12. Vorobiev A.M., Bagmutov A.S., Popov I A., “on Formal Asymptotic Expansion of Resonance For Quantum Waveguide With Perforated Semitransparent Barrier”, Nanosyst.-Phys. Chem. Math., 10:4 (2019), 415–419  crossref  isi
    13. Gerasimov D.A., Popov I.Y., “Completeness of Resonance States For Quantum Graph With Two Semi-Infinite Edges”, Complex Var. Elliptic Equ., 63:7-8, SI (2018), 996–1010  crossref  mathscinet  zmath  isi  scopus
    14. Popov I.Yu., “Resonance States Completeness For a Model of the Helmholtz Resonator With Line-Like Window”, Appl. Math. E-Notes, 17 (2017), 157–163  mathscinet  isi
    15. Popov A.I., Popov I.Y., Gerasimov D.A., “Resonance State Completeness Problem For Quantum Graph”, Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2016 (ICNAAM-2016), AIP Conference Proceedings, 1863, eds. Simos T., Tsitouras C., Amer Inst Physics, 2017, UNSP 390002-1  crossref  isi  scopus  scopus
    16. I.Y. Popov, A.I. Popov, “Line with attached segment as a model of Helmholtz resonator: Resonant states completeness”, Journal of King Saud University - Science, 29:1 (2017), 133  crossref
    17. Habib Ammari, Hai Zhang, “A Mathematical Theory of Super-Resolution by Using a System of Sub-Wavelength Helmholtz Resonators”, Commun. Math. Phys, 2015  crossref  mathscinet  isi  scopus  scopus
    18. Vorobiev A.M., Popov I.Yu., “Model of Quantum Dot and Resonant States For the Helmholtz Resonator”, 2Nd International School and Conference Saint-Petersburg Open on Optoelectronics, Photonics, Engineering and Nanostructures (Spbopen2015), Journal of Physics Conference Series, 643, IOP Publishing Ltd, 2015, 012097  crossref  isi  scopus  scopus
    19. Gadyl'shin R.R., “On Regular and Singular Perturbations of the Eigenelements of the Laplacian”, Analytic Methods, Integral Methods in Science and Engineering, 1, 2010, 135–148  crossref  mathscinet  zmath  isi
    20. Trifanova, ES, “Resonance phenomena in curved quantum waveguides coupled via windows”, Technical Physics Letters, 35:2 (2009), 180  crossref  adsnasa  isi  elib  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:857
    Russian version PDF:293
    English version PDF:43
    References:93
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025