Citation:
M. I. Vishik, G. I. Èskin, “Elliptic equations in convolution in a bounded domain and their applications”, Russian Math. Surveys, 22:1 (1967), 13–75
\Bibitem{VisEsk67}
\by M.~I.~Vishik, G.~I.~\`Eskin
\paper Elliptic equations in convolution in a~bounded domain and their applications
\jour Russian Math. Surveys
\yr 1967
\vol 22
\issue 1
\pages 13--75
\mathnet{http://mi.mathnet.ru/eng/rm5698}
\crossref{https://doi.org/10.1070/RM1967v022n01ABEH001203}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=214910}
\zmath{https://zbmath.org/?q=an:0167.44801}
Linking options:
https://www.mathnet.ru/eng/rm5698
https://doi.org/10.1070/RM1967v022n01ABEH001203
https://www.mathnet.ru/eng/rm/v22/i1/p15
This publication is cited in the following 29 articles:
N. R. Izvarina, A. Yu. Savin, “Complexes in relative elliptic theory”, Eurasian Math. J., 11:4 (2020), 45–57
A. Yu. Savin, “O gomotopicheskoi klassifikatsii ellipticheskikh zadach so szhatiyami i K-gruppakh sootvetstvuyuschikh C∗-algebr”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 64, no. 1, Rossiiskii universitet druzhby narodov, M., 2018, 164–179
F. V. Lubyshev, M. E. Fairuzov, “Approksimatsiya smeshannoi kraevoi zadachi”, Zhurnal SVMO, 20:4 (2018), 429–438
Vladimir Vasilyev, AIP Conference Proceedings, 1997, 2018, 020052
V. B. Vasilyev, “Pseudodifferential Operators and Equations of Variable Order”, Diff Equat, 54:9 (2018), 1156
A. Yu. Savin, B. Yu. Sternin, “Homotopy classification of elliptic problems associated with discrete group actions on manifolds with boundary”, Ufa Math. J., 8:3 (2016), 122–129
Agranovich M.S., “Strongly elliptic second order systems with spectral parameter in transmission conditions on a nonclosed surface”, Pseudo-Differential Operators and Related Topics, Operator Theory : Advances and Applications, 164, 2006, 1–21
V. Rabinovich, B.-W. Schulze, N. Tarkhanov, “Boundary Value Problems in Oscillating Cuspidal Wedges”, Rocky Mountain J. Math., 34:4 (2004)
Giuseppe Savaré, “Regularity and perturbation results for mixed second order elliptic problems”, Communications in Partial Differential Equations, 22:5-6 (1997), 869
Giuseppe Savaré, “Parabolic problems with mixed variable lateral conditions: An abstract approach”, Journal de Mathématiques Pures et Appliquées, 76:4 (1997), 321
B. Yu. Sternin, V. E. Shatalov, “Relative elliptic theory and the Sobolev problem”, Sb. Math., 187:11 (1996), 1691–1720
G. R. Pogosyan, “Variatsionno-raznostnyi metod resheniya zadachi dirikhle dlya psevdodifferentsialnykh ellipticheskikh uravnenii proizvolnogo poryadka”, Uch. zapiski EGU, ser. Fizika i Matematika, 1990, no. 1, 26–32
R. Simanca Santiago, “Mixed elliptic boundary value problems”, Communications in Partial Differential Equations, 12:2 (1987), 123
Nguyen Minh Chuong, “On isomorphism of Sobolev spaces of variable order”, Math. USSR-Sb., 49:1 (1984), 1–17
Nguyen Minh Chuong, “A boundary-value problem with discontinuous boundary conditions”, Russian Math. Surveys, 37:5 (1982), 186–187
Ulf Pillat, Bert—Wolfgang Schulze, “Some classes of non—elliptic boundary value problems for pseudo—differential operators II. overdetermined and under— determined systems”, Communications in Partial Differential Equations, 6:4 (1981), 373
A.J. Pryde, “Spaces with homogeneous norms”, BAZ, 21:2 (1980), 189
Erhard Meister, Lecture Notes in Mathematics, 827, Ordinary and Partial Differential Equations, 1980, 182
W. L. Wendland, E. Stephan, G. C. Hsiao, E. Meister, “On the integral equation method for the plane mixed boundary value problem of the Laplacian”, Math Meth Appl Sci, 1:3 (1979), 265
I. Babuška, J. E. Osborn, “Numerical treatment of eigenvalue problems for differential equations with discontinuous coefficients”, Math. Comp., 32:144 (1978), 991