Processing math: 100%
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1968, Volume 23, Issue 6, Pages 53–124
DOI: https://doi.org/10.1070/RM1968v023n06ABEH001251
(Mi rm5684)
 

This article is cited in 77 scientific papers (total in 77 papers)

Duality of convex functions and extremum problems

A. D. Ioffe, V. M. Tikhomirov
References:
Abstract: Let X be a real linear topological space and Y its conjugate. We denote by x,y the value of the linear functional yY on the element xX. For real functions f(x) on X we introduce two operations: the ordinary sum
f1(x)+f2(x)
and the convolution
f1f2(x)=infx1+x2=x(f1(x1)+f2(x2)),
and also the transformation associating with f(x) its dual function on Y which is obtained from f(x) by the formula
f(y)=supxX(x,yf(x)).
The following propositions hold.
1) The operation is involutory:
f=f
if and only if f(x) is a convex function and lower semicontinuous on X.
2) (f1f2)=f1+f2.
3) Under certain additional assumptions
(f1+f2)=f1f2.
These theorems were proved for a finite-dimensional space by Fenchel [93] and in the general case by Moreau [60].
Chapter I is concerned with proving these theorems and generalizations of them.
Chapter II is concerned with their application to mathematical programming and the calculus of variations. Proofs are given of very general duality theorems of mathematical programming and saddle point theorems. Constructions are then given which lead to extensions of optimal control problems, and an existence theorem is proved for these problems.
Chapter III contains an investigation of problems of approximating xX and the set CX by an approximating set AX using methods of the theory of duality of convex functions. Duality theorems for some geometric characteristics of sets in X are derived at the end of the chapter.
Bibliographic databases:
Document Type: Article
UDC: 517.51+519.3+519.95
Language: English
Original paper language: Russian
Citation: A. D. Ioffe, V. M. Tikhomirov, “Duality of convex functions and extremum problems”, Russian Math. Surveys, 23:6 (1968), 53–124
Citation in format AMSBIB
\Bibitem{IofTik68}
\by A.~D.~Ioffe, V.~M.~Tikhomirov
\paper Duality of convex functions and extremum problems
\jour Russian Math. Surveys
\yr 1968
\vol 23
\issue 6
\pages 53--124
\mathnet{http://mi.mathnet.ru/eng/rm5684}
\crossref{https://doi.org/10.1070/RM1968v023n06ABEH001251}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=288601}
\zmath{https://zbmath.org/?q=an:0167.42202|0191.13101}
Linking options:
  • https://www.mathnet.ru/eng/rm5684
  • https://doi.org/10.1070/RM1968v023n06ABEH001251
  • https://www.mathnet.ru/eng/rm/v23/i6/p51
  • This publication is cited in the following 77 articles:
    1. A. A. Vasil'eva, “Estimates for the Kolmogorov widths of an intersection of two balls in a mixed norm”, Sb. Math., 215:1 (2024), 74–89  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Mo Sodwatana, Saif R. Kazi, Kaarthik Sundar, Adam Brandt, Anatoly Zlotnik, “Locational marginal pricing of energy in pipeline transport of natural gas and hydrogen with carbon offset incentives”, International Journal of Hydrogen Energy, 96 (2024), 574  crossref
    3. O. L. Vinogradov, “Kriterii ogranichennosti usrednenii v prostranstvakh Lebega s peremennym pokazatelem na periode”, Issledovaniya po lineinym operatoram i teorii funktsii. 52, Zap. nauchn. sem. POMI, 537, POMI, SPb., 2024, 40–63  mathnet
    4. A. K. Cherkashin, E. A. Rasputina, “Mathematical and statistical analysis of geo-images for studying the spatial organization of geosystems”, Lomonosov Geography Journal, 79:№5, 2024 (2024), 40  crossref
    5. Roman A. Polyak, Springer Optimization and Its Applications, 172, Introduction to Continuous Optimization, 2021, 145  crossref
    6. Andrea Bressan, Michael S Floater, Espen Sande, “On best constants in L2 approximation”, IMA Journal of Numerical Analysis, 41:4 (2021), 2830  crossref
    7. Roman A. Polyak, Springer Optimization and Its Applications, 172, Introduction to Continuous Optimization, 2021, 11  crossref
    8. Rafael Correa, Abderrahim Hantoute, Pedro Pérez-Aros, “Qualification Conditions-Free Characterizations of the $\varepsilon $-Subdifferential of Convex Integral Functions”, Appl Math Optim, 83:3 (2021), 1709  crossref
    9. Roman A. Polyak, Springer Optimization and Its Applications, 172, Introduction to Continuous Optimization, 2021, 101  crossref
    10. Rafael Correa, Abderrahim Hantoute, Pedro Pérez-Aros, “Subdifferential Calculus Rules for Possibly Nonconvex Integral Functions”, SIAM J. Control Optim., 58:1 (2020), 462  crossref
    11. N. Temirgaliev, A. Zh. Zhubanysheva, “Computational (Numerical) diameter in a context of general theory of a recovery”, Russian Math. (Iz. VUZ), 63:1 (2019), 79–86  mathnet  crossref  crossref  isi
    12. A. A. Vasileva, “Kolmogorovskie poperechniki klassov Soboleva na otrezke s ogranicheniyami na variatsiyu”, Tr. IMM UrO RAN, 25, no. 2, 2019, 48–66  mathnet  crossref  elib
    13. Yu. V. Malykhin, K. S. Ryutin, “The Product of Octahedra is Badly Approximated in the $\ell_{2,1}$-Metric”, Math. Notes, 101:1 (2017), 94–99  mathnet  crossref  crossref  mathscinet  isi  elib
    14. Michael S. Floater, Espen Sande, “Optimal spline spaces of higher degree for L2 n-widths”, Journal of Approximation Theory, 216 (2017), 1  crossref
    15. Roman A. Polyak, Springer Optimization and Its Applications, 115, Optimization and Its Applications in Control and Data Sciences, 2016, 437  crossref
    16. F. S. Stonyakin, “Sequential analogues of the Lyapunov and Krein–Milman theorems in Fréchet spaces”, Journal of Mathematical Sciences, 225:2 (2017), 322–344  mathnet  crossref
    17. F. S. Stonyakin, “Anti-compacts and their applications to analogs of Lyapunov and Lebesgue theorems in Frechét spaces”, Journal of Mathematical Sciences, 218:4 (2016), 526–548  mathnet  crossref
    18. A.A.. Sherstov, “The Intersection of Two Halfspaces Has High Threshold Degree”, SIAM J. Comput, 42:6 (2013), 2329  crossref
    19. Alexander A. Sherstov, “The Pattern Matrix Method”, SIAM J. Comput, 40:6 (2011), 1969  crossref
    20. A. Yu. Popov, “Explicit solution for the incommensurable frequency oscillation control problem under limited resource control”, Autom. Remote Control, 69:4 (2008), 597–608  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:2163
    Russian version PDF:1035
    English version PDF:94
    References:143
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025