Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1969, Volume 24, Issue 3, Pages 97–167
DOI: https://doi.org/10.1070/RM1969v024n03ABEH001348
(Mi rm5497)
 

This article is cited in 102 scientific papers (total in 102 papers)

The principle of limit amplitude

D. M. Èidus
References:
Abstract: The paper deals with the asymptotic behaviour (as t) of the solutions of some non-stationary problems in mathematical physics. The main aim of the paper is to clarify conditions under which stationary oscillations can be obtained from non-stationary ones in the limit t. We study the case of an elliptic self-adjoint second order operator acting in an infinite domain with a finite boundary. We also discuss some higher order operators, as well as the Laplace operator in a domain of special type with an infinite boundary.
Received: 02.12.1968
Bibliographic databases:
Document Type: Article
UDC: 517.9+517.4
MSC: 47F05, 47A05, 47B25
Language: English
Original paper language: Russian
Citation: D. M. Èidus, “The principle of limit amplitude”, Russian Math. Surveys, 24:3 (1969), 97–167
Citation in format AMSBIB
\Bibitem{Eid69}
\by D.~M.~\`Eidus
\paper The principle of limit amplitude
\jour Russian Math. Surveys
\yr 1969
\vol 24
\issue 3
\pages 97--167
\mathnet{http://mi.mathnet.ru/eng/rm5497}
\crossref{https://doi.org/10.1070/RM1969v024n03ABEH001348}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=601072}
\zmath{https://zbmath.org/?q=an:0197.08102}
Linking options:
  • https://www.mathnet.ru/eng/rm5497
  • https://doi.org/10.1070/RM1969v024n03ABEH001348
  • https://www.mathnet.ru/eng/rm/v24/i3/p91
  • This publication is cited in the following 102 articles:
    1. Anton Arnold, Sjoerd Geevers, Ilaria Perugia, Dmitry Ponomarev, “On the limiting amplitude principle for the wave equation with variable coefficients”, Communications in Partial Differential Equations, 2024, 1  crossref
    2. Hiroshi Isozaki, Mathematical Physics Studies, Many-Body Schrödinger Equation, 2023, 61  crossref
    3. A.I. Komech, A.E. Merzon, “On Malyshev's Method of Automorphic Functions in Diffraction by Wedges”, Markov Processes And Related Fields, 2023, no. 4(29), 493  crossref
    4. Hiroshi Isozaki, Mathematical Physics Studies, Many-Body Schrödinger Equation, 2023, 175  crossref
    5. Hiroshi Isozaki, Mathematical Physics Studies, Many-Body Schrödinger Equation, 2023, 315  crossref
    6. Boussaid N., Comech A., “Limiting Absorption Principle and Virtual Levels of Operators in Banach Spaces”, Ann. Math. Que., 46:1 (2022), 161–180  crossref  isi
    7. Hiroshi Isozaki, Arne Jensen, “Continuum limit for lattice Schrödinger operators”, Rev. Math. Phys., 34:02 (2022)  crossref
    8. Patrick Ciarlet, Maryna Kachanovska, “A Mathematical Study of a Hyperbolic Metamaterial in Free Space”, SIAM J. Math. Anal., 54:2 (2022), 2216  crossref
    9. Maxence Cassier, Christophe Hazard, Patrick Joly, “Spectral theory for Maxwell's equations at the interface of a metamaterial. Part II: Limiting absorption, limiting amplitude principles and interface resonance”, Communications in Partial Differential Equations, 47:6 (2022), 1217  crossref
    10. Anton Arnold, Sjoerd Geevers, Ilaria Perugia, Dmitry Ponomarev, “An adaptive finite element method for high-frequency scattering problems with smoothly varying coefficients”, Computers & Mathematics with Applications, 109 (2022), 1  crossref
    11. Camille Carvalho, Patrick Ciarlet, Claire Scheid, “Limiting amplitude principle and resonances in plasmonic structures with corners: Numerical investigation”, Computer Methods in Applied Mechanics and Engineering, 388 (2022), 114207  crossref
    12. Komech A., Merzon A., “Stationary Diffraction By Wedges Method of Automorphic Functions on Complex Characteristics Preface”: Komech, A Merzon, A, Stationary Diffraction By Wedges: Method of Automorphic Functions on Complex Characteristics, Lect. Notes Math., Lecture Notes in Mathematics, 2249, Springer International Publishing Ag, 2019, VII+  isi
    13. Alexander Komech, Anatoli Merzon, Lecture Notes in Mathematics, 2249, Stationary Diffraction by Wedges, 2019, 37  crossref
    14. Franck Assous, Patrick Ciarlet, Simon Labrunie, Applied Mathematical Sciences, 198, Mathematical Foundations of Computational Electromagnetism, 2018, 1  crossref
    15. Franck Assous, Patrick Ciarlet, Simon Labrunie, Applied Mathematical Sciences, 198, Mathematical Foundations of Computational Electromagnetism, 2018, 313  crossref
    16. Maxence Cassier, Christophe Hazard, Patrick Joly, “Spectral theory for Maxwell's equations at the interface of a metamaterial. Part I: Generalized Fourier transform”, Communications in Partial Differential Equations, 42:11 (2017), 1707  crossref
    17. Kiyoshi Mochizuki, Hideo Nakazawa, Trends in Mathematics, New Trends in Analysis and Interdisciplinary Applications, 2017, 521  crossref
    18. A. V. Filinovskii, “Spectrum and stabilization in hyperbolic problems”, J. Math. Sci. (N. Y.), 234:4 (2018), 531–547  mathnet  crossref
    19. Kazunori Ando, Hiroshi Isozaki, Hisashi Morioka, “Spectral Properties of Schrödinger Operators on Perturbed Lattices”, Ann. Henri Poincaré, 17:8 (2016), 2103  crossref
    20. Nicolas Popoff, Eric Soccorsi, “Limiting absorption principle for the magnetic Dirichlet Laplacian in a half-plane”, Communications in Partial Differential Equations, 41:6 (2016), 879  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1349
    Russian version PDF:457
    English version PDF:39
    References:89
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025