Loading [MathJax]/jax/output/SVG/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1970, Volume 25, Issue 5, Pages 1–57
DOI: https://doi.org/10.1070/RM1970v025n05ABEH003801
(Mi rm5402)
 

This article is cited in 67 scientific papers (total in 68 papers)

Embeddings and immersions in Riemannian geometry

M. L. Gromov, V. A. Rokhlin
References:
Abstract: This article is a significantly expanded version of a paper read by one of the authors to the Moscow Mathematical Society [18]. It consists of two chapters and eleven appendices. The first chapter contains a survey of known results, as a rule with precise statements and references, but without full proofs. In the second chapter, the fundamental embedding theorems are set out in detail, among them some new results concerning a bound for the smallest dimension of a euclidean space in which any compact riemannian manifold of given dimension can be embedded, and also to the corresponding local problem. In Appendices 1, 3, 4, 5, 7, 8 and 9, proofs of miscellaneous propositions in the survey are given. Appendices 2 and 6 are needed for other appendices, but are interesting in their own right. In Appendix 10 a more general embedding problem is considered. Appendix 11 has a bearing on Chapter 2 and is of an analytic nature.
We wish to thank I. A. Bakel'man, A. L. Verner, Yu. A. Volkov, S. P. Geisberg, V. L. Eidlin and Ya. M. Eliashberg for their help in the preparation of the article. We are especially grateful to Yu. D. Burago who at our request modified one of his inequalities to suit our requirements (Appendix 2).
Received: 13.05.1970
Bibliographic databases:
Document Type: Article
UDC: 513.813
MSC: 58B20, 57R40, 57N35
Language: English
Original paper language: Russian
Citation: M. L. Gromov, V. A. Rokhlin, “Embeddings and immersions in Riemannian geometry”, Russian Math. Surveys, 25:5 (1970), 1–57
Citation in format AMSBIB
\Bibitem{GroRok70}
\by M.~L.~Gromov, V.~A.~Rokhlin
\paper Embeddings and immersions in Riemannian geometry
\jour Russian Math. Surveys
\yr 1970
\vol 25
\issue 5
\pages 1--57
\mathnet{http://mi.mathnet.ru/eng/rm5402}
\crossref{https://doi.org/10.1070/RM1970v025n05ABEH003801}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=290390}
\zmath{https://zbmath.org/?q=an:0202.21004|0222.53053}
Linking options:
  • https://www.mathnet.ru/eng/rm5402
  • https://doi.org/10.1070/RM1970v025n05ABEH003801
  • https://www.mathnet.ru/eng/rm/v25/i5/p3
  • This publication is cited in the following 68 articles:
    1. E. Minguzzi, “Lorentzian manifolds properly isometrically embeddable in Minkowski spacetime”, Lett Math Phys, 113:3 (2023)  crossref
    2. Shoto Aoki, Hidenori Fukaya, “Curved domain-wall fermions”, Progress of Theoretical and Experimental Physics, 2022  crossref
    3. Bernard Bru, Salah Eid, Trends in the History of Science, The Splendors and Miseries of Martingales, 2022, 337  crossref
    4. Miguel Sánchez, “Globally hyperbolic spacetimes: slicings, boundaries and counterexamples”, Gen Relativ Gravit, 54:10 (2022)  crossref
    5. Sheykin A.A., Markov V M., Paston S.A., “Global Embedding of Btz Spacetime Using Generalized Method of Symmetric Embeddings Construction”, J. Math. Phys., 62:10 (2021), 102502  crossref  isi
    6. Clément Berenfeld, Marc Hoffmann, “Density estimation on an unknown submanifold”, Electron. J. Statist., 15:1 (2021)  crossref
    7. Barry Minemyer, “The isometric embedding problem for length metric spaces”, J. Topol. Anal., 13:04 (2021), 889  crossref
    8. Knut Hüper, Krzysztof A. Krakowski, Fátima Silva Leite, Handbook of Variational Methods for Nonlinear Geometric Data, 2020, 577  crossref
    9. Josef Mikeš et al., Differential Geometry of Special Mappings, 2019  crossref
    10. Josef Mikeš et al., Differential Geometry of Special Mappings, 2019  crossref
    11. Camillo De Lellis, The Abel Prize, The Abel Prize 2013-2017, 2019, 391  crossref
    12. Marcos Dajczer, Ruy Tojeiro, Universitext, Submanifold Theory, 2019, 1  crossref
    13. Zichun Zhong, Wenping Wang, Bruno Lévy, Jing Hua, Xiaohu Guo, “Computing a high-dimensional euclidean embedding from an arbitrary smooth riemannian metric”, ACM Trans. Graph., 37:4 (2018), 1  crossref
    14. Hwajeong Kim, “Morse theory for minimal surfaces in manifolds”, Ann Glob Anal Geom, 54:2 (2018), 273  crossref
    15. Gromov M., “Geometric, algebraic, and analytic descendants of Nash isometric embedding theorems”, Bull. Amer. Math. Soc., 54:2 (2017), 173–245  crossref  mathscinet  zmath  isi  scopus
    16. Barry Minemyer, “Simplicial isometric embeddings of polyhedra”, Mosc. Math. J., 17:1 (2017), 79–95  mathnet  crossref  mathscinet
    17. Hungerbuhler N., Wasem M., “The One-Sided Isometric Extension Problem”, Results Math., 71:3-4 (2017), 749–781  crossref  isi
    18. I. Kh. Sabitov, “The Moscow Mathematical Society and metric geometry: from Peterson to contemporary research”, Trans. Moscow Math. Soc., 77 (2016), 149–175  mathnet  crossref  elib
    19. María Carmen Romero Fuster, Federico Sánchez-Bringas, “Isometric immersions with prefixed second order geometry in minimal codimension”, RACSAM, 110:2 (2016), 633  crossref
    20. Ali H. Chamseddine, Viatcheslav Mukhanov, “On unification of gravity and gauge interactions”, J. High Energ. Phys., 2016:3 (2016)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:2038
    Russian version PDF:1036
    English version PDF:113
    References:116
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025