Abstract:
This article contains a survey of results on representations of the diffeomorphism group of a noncompact manifold X associated with the space Γx of configurations (that is, of locally finite subsets) in X. These representations are constructed from a quasi-invariant measure μ on Γx. In particular, necessary and sufficient conditions are established for the representations to be irreducible. In the case of the Poisson measure μ a description is given of the corresponding representation ring.
\Bibitem{VerGelGra75}
\by A.~M.~Vershik, I.~M.~Gel'fand, M.~I.~Graev
\paper Representations of the group of diffeomorphisms
\jour Russian Math. Surveys
\yr 1975
\vol 30
\issue 6
\pages 1--50
\mathnet{http://mi.mathnet.ru/eng/rm4288}
\crossref{https://doi.org/10.1070/RM1975v030n06ABEH001527}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=399343}
\zmath{https://zbmath.org/?q=an:0317.58009|0337.58003}
Linking options:
https://www.mathnet.ru/eng/rm4288
https://doi.org/10.1070/RM1975v030n06ABEH001527
https://www.mathnet.ru/eng/rm/v30/i6/p3
This publication is cited in the following 71 articles:
M. I. Gozman, “Lineinye predstavleniya algebry Li gruppy diffeomorfizmov v prostranstve $\mathbb{R}^d$”, TMF, 223:1 (2025), 3–28
Valerii Ryzhikov, Jean-Paul Thouvenot, “Quasi-similarity, entropy and disjointness of ergodic actions”, Funct. Anal. Appl., 58:1 (2024), 90–96
O.L. Rebenko, MATHEMATICAL FOUNDATIONS OF MODERN STATISTICAL MECHANICS, 2024
T. Thiemann, “Observations on representations of the spatial diffeomorphism group and algebra in all dimensions”, Phys. Rev. D, 110:12 (2024)
Élise Janvresse, Emmanuel Roy, Thierry De La Rue, Encyclopedia of Complexity and Systems Science Series, Ergodic Theory, 2023, 217
Lorenzo Dello Schiavo, “The Dirichlet–Ferguson diffusion on the space of probability measures over a closed Riemannian manifold”, Ann. Probab., 50:2 (2022)
Keys D., Wehr J., “Poisson Stochastic Master Equation Unravelings and the Measurement Problem: a Quantum Stochastic Calculus Perspective”, J. Math. Phys., 61:3 (2020), 032101
Élise Janvresse, Emmanuel Roy, Thierry De La Rue, Encyclopedia of Complexity and Systems Science, 2020, 1
Anatoly N. Kochubei, Yuri Kondratiev, “Representations of the infinite-dimensional p-adic affine group”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 23:01 (2020), 2050002
V. V. Ryazanov, “Obtaining the thermodynamic relations for the Gibbs ensemble using the maximum entropy method”, Theoret. and Math. Phys., 194:3 (2018), 390–403
I. V. Klimov, V. V. Ryzhikov, “Minimal Self-Joinings of Infinite Mixing Actions of Rank 1”, Math. Notes, 102:6 (2017), 787–791
C. J. Cotter, J. Eldering, D. D. Holm, H. O. Jacobs, D. M. Meier, “Weak Dual Pairs and Jetlet Methods for Ideal Incompressible Fluid Models in $n \ge 2$ n ≥ 2 Dimensions”, J Nonlinear Sci, 26:6 (2016), 1723
Yuri Kondratiev, Eugene Lytvynov, Anatoly Vershik, “Laplace operators on the cone of Radon measures”, Journal of Functional Analysis, 2015
V. V. Ryzhikov, J.-P. Thouvenot, “On the Centralizer of an Infinite Mixing Rank-One Transformation”, Funct. Anal. Appl., 49:3 (2015), 230–233
M. Bożejko, E. W. Lytvynov, I. V. Rodionova, “An extended anyon Fock space and noncommutative Meixner-type orthogonal polynomials in infinite dimensions”, Russian Math. Surveys, 70:5 (2015), 857–899
Leonid Bogachev, Alexei Daletskii, “Gibbs cluster measures on configuration spaces”, Journal of Functional Analysis, 264:2 (2013), 508
Leonid Bogachev, Alexei Daletskii, “Cluster point processes on manifolds”, Journal of Geometry and Physics, 2012
A. M. Vershik, N. V. Smorodina, “Nonsingular transformations of the symmetric Lévy processes”, J. Math. Sci. (N. Y.), 199:2 (2014), 123–129
A. M. Vershik, M. I. Graev, “Poisson model of the Fock space and representations of current groups”, St. Petersburg Math. J., 23:3 (2012), 459–510
Alexei Daletskii, Alexander Kalyuzhnyi, “dimensions of spaces of braid-invariant harmonic forms”, Journal of Geometry and Physics, 2011