Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1976, Volume 31, Issue 6, Pages 109–131
DOI: https://doi.org/10.1070/RM1976v031n06ABEH001580
(Mi rm4011)
 

This article is cited in 11 scientific papers (total in 11 papers)

The development of the theory of ordinary differential equations with a small parameter multiplying the highest derivative during the period 1966–1976

A. B. Vasil'eva
References:
Abstract: We survey the results relating to the theory of singular perturbations, in particular, to the theory of ordinary differential equations with a small parameter multiplying the highest derivative, that have been obtained by pupils of A. N. Tikhonov during the period 1966-1976. The main attention is directed at problems in which the roots of the characteristic equation have real parts of different signs (the conditionally stable case), and also at problems in which the characteristic equation has roots that are identically zero.
Received: 09.07.1976
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Original paper language: Russian
Citation: A. B. Vasil'eva, “The development of the theory of ordinary differential equations with a small parameter multiplying the highest derivative during the period 1966–1976”, Russian Math. Surveys, 31:6 (1976), 109–131
Citation in format AMSBIB
\Bibitem{Vas76}
\by A.~B.~Vasil'eva
\paper The development of the theory of ordinary differential equations with a~small parameter multiplying the highest derivative during the period 1966--1976
\jour Russian Math. Surveys
\yr 1976
\vol 31
\issue 6
\pages 109--131
\mathnet{http://mi.mathnet.ru/eng/rm4011}
\crossref{https://doi.org/10.1070/RM1976v031n06ABEH001580}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=473373}
\zmath{https://zbmath.org/?q=an:0366.34044|0376.34045}
Linking options:
  • https://www.mathnet.ru/eng/rm4011
  • https://doi.org/10.1070/RM1976v031n06ABEH001580
  • https://www.mathnet.ru/eng/rm/v31/i6/p102
  • This publication is cited in the following 11 articles:
    1. V. N. Popov, A. N. Cherepanov, “Numerical Simulation of the Structure Formation and Crystallization of Foamed Aluminum Modified by Nanosized Particles”, Phys. Metals Metallogr., 125:12 (2024), 1444  crossref
    2. Rahul Mallik, Branko Majmunovic, Soham Dutta, Gab-Su Seo, Dragan Maksimovic, Brian Johnson, “Control Design of Series-Connected PV-Powered Grid-Forming Converters via Singular Perturbation”, IEEE Trans. Power Electron., 38:4 (2023), 4306  crossref
    3. Christian Kuehn, Applied Mathematical Sciences, 191, Multiple Time Scale Dynamics, 2015, 239  crossref
    4. Christian Kuehn, Applied Mathematical Sciences, 191, Multiple Time Scale Dynamics, 2015, 1  crossref
    5. D. Subbaram Naidu, “Singular perturbations and hysteresis. Michael P. Mortell, Robert E. O'Malley, Alexei Pokrovskii and Vladimir Sobolev, Society of Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005. No. of pages: xiv+344. Price: $66.00. ISBN 0-089871-597-0”, Int J Robust Nonlinear Control, 17:12 (2007), 1155  crossref  mathscinet
    6. Walter Kelley, “Perturbation problems with quadratic dependence on the first derivative”, Nonlinear Analysis: Theory, Methods & Applications, 51:3 (2002), 469  crossref
    7. “Singular Perturbations and Time Scales in Guidance and Control of Aerospace Systems: A Survey”, Journal of Guidance, Control, and Dynamics, 24:6 (2001), 1057  crossref
    8. V. S. Korolyuk, “The Boundary Layer in the Asymptotic Analysis of Random Walks”, Theory Probab Appl, 34:1 (1989), 179  mathnet  crossref  mathscinet  zmath  isi
    9. K. Nipp, Dynamics Reported, 1, Dynamics Reported, 1988, 173  crossref
    10. J. J. Mahony, J. J. Shepherd, “Stiff systems of ordinary differential equations. Part 1. Completely stiff, homogeneous systems”, J Aust Math Soc Series B Appl Math, 23:1 (1981), 17  crossref  mathscinet  zmath  isi
    11. R. E. O’Malley, Jr, “A Singular Singularly-Perturbed Linear Boundary Value Problem”, SIAM J Math Anal, 10:4 (1979), 695  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:641
    Russian version PDF:238
    English version PDF:34
    References:85
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025