Abstract:
This article contains a survey of the research during the last decade on the analytic theory of Feynman integrals. We give a combinatorial definition of a Feynman integral, the explicit form of the simplest Feynman integrals, also the equations of their Landau varieties and a concise characterization of them. The main part of the article contains an investigation of the analytic and asymptotic properties of the Feynman integral of a single-loop diagram in the zero-spin theory of the interactions of particles: we give its expansion in a generalized hypergeometric series, the system of partial differential equations satisfied by it, and the ramification properties of the integral on a Landau variety. The problems solved for this integral allow us to pose a number of interesting problems for an arbitrary convergent Feynman integral.
\Bibitem{Gol76}
\by V.~A.~Golubeva
\paper Some problems in the analytic theory of Feynman integrals
\jour Russian Math. Surveys
\yr 1976
\vol 31
\issue 2
\pages 139--207
\mathnet{http://mi.mathnet.ru/eng/rm3682}
\crossref{https://doi.org/10.1070/RM1976v031n02ABEH001487}
\zmath{https://zbmath.org/?q=an:0334.28008|0342.28005}
Linking options:
https://www.mathnet.ru/eng/rm3682
https://doi.org/10.1070/RM1976v031n02ABEH001487
https://www.mathnet.ru/eng/rm/v31/i2/p135
This publication is cited in the following 24 articles:
Leonardo de la Cruz, Pierre Vanhove, “Algorithm for differential equations for Feynman integrals in general dimensions”, Lett Math Phys, 114:3 (2024)
Lyudmila Khvoshchinskaya, Sergei Rogosin, Operator Theory: Advances and Applications, 297, Analysis without Borders, 2024, 171
Wojciech Flieger, William J. Torres Bobadilla, “Landau and leading singularities in arbitrary space-time dimensions”, Eur. Phys. J. Plus, 139:11 (2024)
Alexander G. Aleksandrov, “On Multivariate Picard–Fuchs Systems and Equations”, J, 6:3 (2023), 437
Pierre Lairez, Pierre Vanhove, “Algorithms for minimal Picard–Fuchs operators of Feynman integrals”, Lett Math Phys, 113:2 (2023)
O. V. Tarasov, “Functional reduction of one-loop Feynman integrals with arbitrary masses”, J. High Energ. Phys., 2022:6 (2022)
Anatoly V. Kotikov, Texts & Monographs in Symbolic Computation, Anti-Differentiation and the Calculation of Feynman Amplitudes, 2021, 235
Mikhail Kalmykov, Vladimir Bytev, Bernd A. Kniehl, Sven-Olaf Moch, Bennie F. L. Ward, Scott A. Yost, Texts & Monographs in Symbolic Computation, Anti-Differentiation and the Calculation of Feynman Amplitudes, 2021, 189
Sebastian Mizera, “Crossing symmetry in the planar limit”, Phys. Rev. D, 104:4 (2021)
Leonardo de la Cruz, “Feynman integrals as A-hypergeometric functions”, J. High Energ. Phys., 2019:12 (2019)
V. A. Golubeva, “On the Regge–Gelfand problem of construction of a Pfaff system of Fuchsian type with a given singular divisor”, Journal of Mathematical Sciences, 202:5 (2014), 653–666
Mikhail Yu. Kalmykov, Bernd A. Kniehl, “Towards all-order Laurent expansion of generalised hypergeometric functions about rational values of parameters”, Nuclear Physics B, 809:3 (2009), 365
Golubeva V.A., “On the Riemann–Hilbert correspondence for generalized Knizhnik–Zamolodchikov equations for different root systems”, Differential Equations and Quantum Groups - ANDREY A. BOLIBRUKH MEMORIAL VOLUME, Irma Lectures in Mathematics and Theoretical Physics, 9, 2007, 189–207
A. A. Bolibruch, Mathematical Events of the Twentieth Century, 2006, 49
V. A. Golubeva, V. P. Leksin, “Algebraic Characterization of the Monodromy of Generalized Knizhnik–Zamolodchikov Equations of Bn Type”, Proc. Steklov Inst. Math., 238 (2002), 115–133
V. A. Golubeva, V. Leksin, International Society for Analysis, Applications and Computation, 8, Proceedings of the Second ISAAC Congress, 2000, 1371
P. K. Suetin, B. I. Golubov, A. F. Leont'ev, M. I. Voǐtsekhovskiǐ, S. A. Aǐvazyan, A. Shtern, L. V. Kuz'min, A. A. Sapozhenko, K. A. Borovkov, M. S. Nikulin, V. P. Maslov, P. S. Modenov, A. I. Shtern, A. G. Dragalin, Vik. S. Kulikov, V. I. Nechaev, E. P. Dolzhenko, E. D. Solomentsev, T. P. Lukashenko, Yu. N. Subbotin, L. D. Ivanov, A. V. Arkhangel'skiǐ, V. I. Ponomarev, E. B. Vinberg, S. A. Telyakovskiǐ, I. I. Volkov, S. N. Smirnov, A. V. Tolstikov, S. A. Stepanov, V. M. Babich, D. D. Sokolov, L. D. Kudryavtsev, D. N. Zubarev, I. V. Proskuryakov, R. A. Minlos, Yu. P. Ivanilov, V. V. Okhrimenko, N. N. Vorob'ev, B. A. Pasynkov, M. Sh. Tsalenko, A. D. Kuz'min, B. L. Laptev, V. S. Malakhovskiǐ, V. I. Malykhin, T. S. Fofanova, A. L. Onishchik, V. E. Plisko, V. N. Latyshev, A. I. Kostrikin, I. V. Dolgachev, Yu. I. Yanov, Yu. I. Merzlyakov, O. A. Ivanova, A. N. Parshin, S. N. Artemov, G. S. Asanov, A. D. Aleksandrov, V. N. Berestovsk, Encyclopaedia of Mathematics, 1995, 549
M. Hazewinkel, Encyclopaedia of Mathematics, 1994, 64
A. A. Bolibrukh, “The Riemann–Hilbert problem”, Russian Math. Surveys, 45:2 (1990), 1–58
A. B. Antonevich, “Boundary value problems with strong nonlocalness for elliptic equations”, Math. USSR-Izv., 34:1 (1990), 1–21