Typesetting math: 100%
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1976, Volume 31, Issue 2, Pages 139–207
DOI: https://doi.org/10.1070/RM1976v031n02ABEH001487
(Mi rm3682)
 

This article is cited in 24 scientific papers (total in 24 papers)

Some problems in the analytic theory of Feynman integrals

V. A. Golubeva
References:
Abstract: This article contains a survey of the research during the last decade on the analytic theory of Feynman integrals. We give a combinatorial definition of a Feynman integral, the explicit form of the simplest Feynman integrals, also the equations of their Landau varieties and a concise characterization of them. The main part of the article contains an investigation of the analytic and asymptotic properties of the Feynman integral of a single-loop diagram in the zero-spin theory of the interactions of particles: we give its expansion in a generalized hypergeometric series, the system of partial differential equations satisfied by it, and the ramification properties of the integral on a Landau variety. The problems solved for this integral allow us to pose a number of interesting problems for an arbitrary convergent Feynman integral.
Received: 20.04.1973
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: English
Original paper language: Russian
Citation: V. A. Golubeva, “Some problems in the analytic theory of Feynman integrals”, Russian Math. Surveys, 31:2 (1976), 139–207
Citation in format AMSBIB
\Bibitem{Gol76}
\by V.~A.~Golubeva
\paper Some problems in the analytic theory of Feynman integrals
\jour Russian Math. Surveys
\yr 1976
\vol 31
\issue 2
\pages 139--207
\mathnet{http://mi.mathnet.ru/eng/rm3682}
\crossref{https://doi.org/10.1070/RM1976v031n02ABEH001487}
\zmath{https://zbmath.org/?q=an:0334.28008|0342.28005}
Linking options:
  • https://www.mathnet.ru/eng/rm3682
  • https://doi.org/10.1070/RM1976v031n02ABEH001487
  • https://www.mathnet.ru/eng/rm/v31/i2/p135
  • This publication is cited in the following 24 articles:
    1. Leonardo de la Cruz, Pierre Vanhove, “Algorithm for differential equations for Feynman integrals in general dimensions”, Lett Math Phys, 114:3 (2024)  crossref
    2. Lyudmila Khvoshchinskaya, Sergei Rogosin, Operator Theory: Advances and Applications, 297, Analysis without Borders, 2024, 171  crossref
    3. Wojciech Flieger, William J. Torres Bobadilla, “Landau and leading singularities in arbitrary space-time dimensions”, Eur. Phys. J. Plus, 139:11 (2024)  crossref
    4. Alexander G. Aleksandrov, “On Multivariate Picard–Fuchs Systems and Equations”, J, 6:3 (2023), 437  crossref
    5. Pierre Lairez, Pierre Vanhove, “Algorithms for minimal Picard–Fuchs operators of Feynman integrals”, Lett Math Phys, 113:2 (2023)  crossref
    6. O. V. Tarasov, “Functional reduction of one-loop Feynman integrals with arbitrary masses”, J. High Energ. Phys., 2022:6 (2022)  crossref
    7. Anatoly V. Kotikov, Texts & Monographs in Symbolic Computation, Anti-Differentiation and the Calculation of Feynman Amplitudes, 2021, 235  crossref
    8. Mikhail Kalmykov, Vladimir Bytev, Bernd A. Kniehl, Sven-Olaf Moch, Bennie F. L. Ward, Scott A. Yost, Texts & Monographs in Symbolic Computation, Anti-Differentiation and the Calculation of Feynman Amplitudes, 2021, 189  crossref
    9. Sebastian Mizera, “Crossing symmetry in the planar limit”, Phys. Rev. D, 104:4 (2021)  crossref
    10. Leonardo de la Cruz, “Feynman integrals as A-hypergeometric functions”, J. High Energ. Phys., 2019:12 (2019)  crossref
    11. V. A. Golubeva, “On the Regge–Gelfand problem of construction of a Pfaff system of Fuchsian type with a given singular divisor”, Journal of Mathematical Sciences, 202:5 (2014), 653–666  mathnet  crossref
    12. Mikhail Yu. Kalmykov, Bernd A. Kniehl, “Towards all-order Laurent expansion of generalised hypergeometric functions about rational values of parameters”, Nuclear Physics B, 809:3 (2009), 365  crossref
    13. Golubeva V.A., “On the Riemann–Hilbert correspondence for generalized Knizhnik–Zamolodchikov equations for different root systems”, Differential Equations and Quantum Groups - ANDREY A. BOLIBRUKH MEMORIAL VOLUME, Irma Lectures in Mathematics and Theoretical Physics, 9, 2007, 189–207  isi
    14. A. A. Bolibruch, Mathematical Events of the Twentieth Century, 2006, 49  crossref
    15. V. A. Golubeva, V. P. Leksin, “Algebraic Characterization of the Monodromy of Generalized Knizhnik–Zamolodchikov Equations of Bn Type”, Proc. Steklov Inst. Math., 238 (2002), 115–133  mathnet  mathscinet  zmath
    16. V. A. Golubeva, V. Leksin, International Society for Analysis, Applications and Computation, 8, Proceedings of the Second ISAAC Congress, 2000, 1371  crossref
    17. P. K. Suetin, B. I. Golubov, A. F. Leont'ev, M. I. Voǐtsekhovskiǐ, S. A. Aǐvazyan, A. Shtern, L. V. Kuz'min, A. A. Sapozhenko, K. A. Borovkov, M. S. Nikulin, V. P. Maslov, P. S. Modenov, A. I. Shtern, A. G. Dragalin, Vik. S. Kulikov, V. I. Nechaev, E. P. Dolzhenko, E. D. Solomentsev, T. P. Lukashenko, Yu. N. Subbotin, L. D. Ivanov, A. V. Arkhangel'skiǐ, V. I. Ponomarev, E. B. Vinberg, S. A. Telyakovskiǐ, I. I. Volkov, S. N. Smirnov, A. V. Tolstikov, S. A. Stepanov, V. M. Babich, D. D. Sokolov, L. D. Kudryavtsev, D. N. Zubarev, I. V. Proskuryakov, R. A. Minlos, Yu. P. Ivanilov, V. V. Okhrimenko, N. N. Vorob'ev, B. A. Pasynkov, M. Sh. Tsalenko, A. D. Kuz'min, B. L. Laptev, V. S. Malakhovskiǐ, V. I. Malykhin, T. S. Fofanova, A. L. Onishchik, V. E. Plisko, V. N. Latyshev, A. I. Kostrikin, I. V. Dolgachev, Yu. I. Yanov, Yu. I. Merzlyakov, O. A. Ivanova, A. N. Parshin, S. N. Artemov, G. S. Asanov, A. D. Aleksandrov, V. N. Berestovsk, Encyclopaedia of Mathematics, 1995, 549  crossref
    18. M. Hazewinkel, Encyclopaedia of Mathematics, 1994, 64  crossref
    19. A. A. Bolibrukh, “The Riemann–Hilbert problem”, Russian Math. Surveys, 45:2 (1990), 1–58  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    20. A. B. Antonevich, “Boundary value problems with strong nonlocalness for elliptic equations”, Math. USSR-Izv., 34:1 (1990), 1–21  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:986
    Russian version PDF:499
    English version PDF:60
    References:106
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025