This article is cited in 1 scientific paper (total in 2 paper)
International conference "Modern Problems of Algebra and Analysis" Brief communications
Precise Hölder exponents for a generalized solution of the Dirichlet problem for the biharmonic equation that are defined by the geometry of the domain
Citation:
V. A. Kondrat'ev, O. A. Oleinik, “Precise Hölder exponents for a generalized solution of the Dirichlet problem for the biharmonic equation that are defined by the geometry of the domain”, Russian Math. Surveys, 40:4 (1985), 193–194
\Bibitem{KonOle85}
\by V.~A.~Kondrat'ev, O.~A.~Oleinik
\paper Precise H\"older exponents for a generalized solution of the Dirichlet problem for the biharmonic equation that are defined by the geometry of the domain
\jour Russian Math. Surveys
\yr 1985
\vol 40
\issue 4
\pages 193--194
\mathnet{http://mi.mathnet.ru/eng/rm2734}
\crossref{https://doi.org/10.1070/RM1985v040n04ABEH003643}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=807743}
\zmath{https://zbmath.org/?q=an:0616.35025}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1985RuMaS..40..193K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985D103900038}
Linking options:
https://www.mathnet.ru/eng/rm2734
https://doi.org/10.1070/RM1985v040n04ABEH003643
https://www.mathnet.ru/eng/rm/v40/i4/p173
This publication is cited in the following 2 articles:
V. A. Kondrat'ev, J. Kopáček, O. A. Oleinik, “On the continuity type on the boundary of nonregular domain of the generalized solution of the Dirichlet problem for biharmonic equation”, Math. USSR-Sb., 69:2 (1991), 607–620
V. I. Arnol'd, M. I. Vishik, I. M. Gel'fand, Yu. V. Egorov, A. S. Kalashnikov, A. N. Kolmogorov, S. P. Novikov, S. L. Sobolev, “Ol'ga Arsen'evna Oleinik (on her sixtieth birthday)”, Russian Math. Surveys, 40:5 (1985), 267–287