Loading [MathJax]/jax/output/SVG/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2000, Volume 55, Issue 2, Pages 207–296
DOI: https://doi.org/10.1070/rm2000v055n02ABEH000267
(Mi rm267)
 

This article is cited in 52 scientific papers (total in 53 papers)

Decision problems for groups and semigroups

S. I. Adiana, V. G. Durnevb

a Steklov Mathematical Institute, Russian Academy of Sciences
b P. G. Demidov Yaroslavl State University
References:
Abstract: The paper presents a detailed survey of results concerning the main decision problems of group theory and semigroup theory, including the word problem, the isomorphism problem, recognition problems, and other algorithmic questions related to them. The well-known theorems of Markov–Post, P. S. Novikov, Adian–Rabin, Higman, Magnus, and Lyndon are given with complete proofs. As a rule, the proofs presented in this survey are substantially simpler than those given in the original papers. For the sake of completeness, we first prove the insolubility of the halting problem for Turing machines, on which the insolubility of the word problem for semigroups is based. Specific attention is also paid to the simplest examples of semigroups with insoluble word problem. We give a detailed proof of the significant result of Lyndon that, in the class of groups presented by a system of defining relations for which the maximum mutual overlapping of any two relators is strictly less than one fifth of their lengths, the word problem is soluble, while insoluble word problems can occur when non-strict inequality is allowed. A proof of the corresponding result for finitely presented semigroups is also given, when the corresponding fraction is one half.
Received: 26.01.2000
Bibliographic databases:
Document Type: Article
UDC: 510.53+512.53+512.54
MSC: Primary 20F10, 20M05; Secondary 20E06, 03D40, 03D10
Language: English
Original paper language: Russian
Citation: S. I. Adian, V. G. Durnev, “Decision problems for groups and semigroups”, Russian Math. Surveys, 55:2 (2000), 207–296
Citation in format AMSBIB
\Bibitem{AdiDur00}
\by S.~I.~Adian, V.~G.~Durnev
\paper Decision problems for groups and semigroups
\jour Russian Math. Surveys
\yr 2000
\vol 55
\issue 2
\pages 207--296
\mathnet{http://mi.mathnet.ru/eng/rm267}
\crossref{https://doi.org/10.1070/rm2000v055n02ABEH000267}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1779941}
\zmath{https://zbmath.org/?q=an:0958.20029}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2000RuMaS..55..207A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000089971300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034415361}
Linking options:
  • https://www.mathnet.ru/eng/rm267
  • https://doi.org/10.1070/rm2000v055n02ABEH000267
  • https://www.mathnet.ru/eng/rm/v55/i2/p3
  • This publication is cited in the following 53 articles:
    1. Zbigniew Lipiński, Jolanta Mizera-Pietraszko, Jolanta Tańcula, “A Study of Cryptographic Algorithms on Special Linear Group Over Ring of Integers Modulo m”, IEEE Access, 13 (2025), 5606  crossref
    2. Eylem Guzel Karpuz, Fatmanur Y{\i}ld{\i}z, “Complete Rewriting System of Schützenberger – Crossed Product of Monoids”, Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi, 6:2 (2024), 33  crossref
    3. V. A. Roman'kov, “Undecidability of the submonoid membership problem for free nilpotent group of class $l\geqslant 2$ of sufficiently large rank”, Izv. Math., 87:4 (2023), 798–816  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. A. N. Rybalov, “Generic Complexity of the Word Problem in Some Semigroups”, Algebra Logic, 61:6 (2023), 524  crossref
    5. M. Rybakov, “Computational complexity of the word problem in modal and pseudo-Boolean algebras with a small number of generators”, Russian Math. (Iz. VUZ), 66:5 (2022), 33–48  mathnet  crossref  crossref  mathscinet
    6. V. A. Roman'kov, “Positive elements and sufficient conditions for solvability of the submonoid membership problem for nilpotent groups of class two”, Sib. elektron. matem. izv., 19:1 (2022), 387–403  mathnet  crossref  mathscinet
    7. I. V. Dobrynina, “O podgruppakh v gruppakh Artina s drevesnoi strukturoi”, Chebyshevskii sb., 23:3 (2022), 118–132  mathnet  crossref
    8. A. N. Rybalov, “O genericheskoi slozhnosti problemy ravenstva v nekotorykh polugruppakh”, Algebra i logika, 61:6 (2022), 766–783  mathnet  crossref
    9. Zbigniew Lipiński, Jolanta Mizera-Pietraszko, Lecture Notes in Computer Science, 13758, Intelligent Information and Database Systems, 2022, 643  crossref
    10. V. A. Roman'kov, “Algorithmic theory of solvable groups”, PDM, 2021, no. 52, 16–64  mathnet  crossref  elib
    11. M. N. Rybakov, “Slozhnost problemy ravenstva slov v mnogoobraziyakh modalnykh algebr”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2021, no. 3, 5–17  mathnet  crossref  elib
    12. Nyberg-Brodda C.-F., “The Word Problem For One-Relation Monoids: a Survey”, Semigr. Forum, 103:2 (2021), 297–355  crossref  isi
    13. Karpuz E.G., Ozalan N.U., “Word Problem For Special Braid Groups(1)”, Quaest. Math., 43:7 (2020), 931–957  crossref  isi  scopus
    14. Cevik A.S., Karpuz E.G., Alsulami H.H., Cetinalp E.K., “A Grobner-Shirshov Basis Over a Special Type of Braid Monoids”, AIMS Math., 5:5 (2020), 4357–4370  crossref  mathscinet  isi
    15. Cevik A.S., Albargi A.H., “A Solution of the Word Problem For Braid Groups Via the Complex Reflection Group G(12)”, Filomat, 34:2, SI (2020), 461–467  crossref  mathscinet  isi
    16. Rybalov A., Iv International Scientific and Technical Conference Mechanical Science and Technology Update (Mstu-2020), Journal of Physics Conference Series, 1546, IOP Publishing Ltd, 2020  crossref  isi
    17. Cetinalp E.K., Karpuz E.G., Cevik A.S., “Complete Rewriting System For the Schutzenberger Product of N Groups”, Asian-Eur. J. Math., 12:1 (2019), 1950012  crossref  mathscinet  zmath  isi  scopus
    18. Ozalan N.U., Wazzan S.A., Karpuz E.G., “Grobner-Shirshov Bases For Congruence Classes of Complex Reflection Groups”, Asian-Eur. J. Math., 12:6, SI (2019), 2040013  crossref  isi
    19. Cetinalp E.K., Karpuz E.G., Sahin R., Ates F., “Complete Rewriting System and Growth Series For Extended Generalized Hecke Groups”, J. Math. Ext., 13:4 (2019), 41–55  isi
    20. Karpuz E.G., Ates F., Urlu N., Cevik A.S., Cangul I.N., “A note on the Gröbner-Shirshov bases over ad-hoc extensions of groups”, Filomat, 30:4 (2016), 1037–1043  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:2133
    Russian version PDF:876
    English version PDF:129
    References:118
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025