Loading [MathJax]/jax/output/CommonHTML/jax.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2000, Volume 55, Issue 1, Pages 93–161
DOI: https://doi.org/10.1070/rm2000v055n01ABEH000250
(Mi rm250)
 

This article is cited in 28 scientific papers (total in 28 papers)

Singularities of affine fibrations in the regularity theory of Fourier integral operators

M. V. Ruzhansky

University of Edinburgh
References:
Abstract: We consider regularity properties of Fourier integral operators in various function spaces. The most interesting case is the Lp spaces, for which survey of recent results is given. For example, sharp orders are known for operators satisfying the so-called smooth factorization condition. Here this condition is analyzed in both real and complex settings. In the letter case, conditions for the continuity of Fourier integral operators are related to singularities of affine fibrations in Cn (or subsets of Cn) specified by the kernels of Jacobi matrices of holomorphic maps. Singularities of such fibrations are analyzed in this paper in the general case. In particular, it is shown that if the dimension n or the rank of the Jacobi matrix is small, then all singularities of an affine fibration are removable. The fibration associated with a Fourier integral operator is given by the kernels of the Hessian of the phase function of the operator. On the basis of an analysis of singularities for operators commuting with translations we show in a number of cases that the factorization condition is satisfied, which leads to Lp estimates for operators. In other cases, examples are given in which the factorization condition fails. The results are applied to deriving Lp estimates for solutions of the Cauchy problem for hyperbolic partial differential operators.
Received: 09.12.1999
Bibliographic databases:
Document Type: Article
UDC: 515.1
MSC: 35S30, 35A20, 58G15
Language: English
Original paper language: Russian
Citation: M. V. Ruzhansky, “Singularities of affine fibrations in the regularity theory of Fourier integral operators”, Russian Math. Surveys, 55:1 (2000), 93–161
Citation in format AMSBIB
\Bibitem{Ruz00}
\by M.~V.~Ruzhansky
\paper Singularities of affine fibrations in the regularity theory of Fourier integral operators
\jour Russian Math. Surveys
\yr 2000
\vol 55
\issue 1
\pages 93--161
\mathnet{http://mi.mathnet.ru/eng/rm250}
\crossref{https://doi.org/10.1070/rm2000v055n01ABEH000250}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1751819}
\zmath{https://zbmath.org/?q=an:0961.35194}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2000RuMaS..55...93R}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000088114800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034410076}
Linking options:
  • https://www.mathnet.ru/eng/rm250
  • https://doi.org/10.1070/rm2000v055n01ABEH000250
  • https://www.mathnet.ru/eng/rm/v55/i1/p99
  • This publication is cited in the following 28 articles:
    1. Garetto C. Jaeh Ch. Ruzhansky M., “Hyperbolic Systems With Non-Diagonalisable Principal Part and Variable Multiplicities, i: Well-Posedness”, Math. Ann., 372:3-4 (2018), 1597–1629  crossref  mathscinet  zmath  isi  scopus
    2. Coriasco S., Ruzhansky M., “Global l-P Continuity of Fourier Integral Operators”, Trans. Am. Math. Soc., 366:5 (2014), 2575–2596  crossref  mathscinet  zmath  isi  scopus  scopus
    3. M. Ruzhansky, David Damanik, Andrei Martinez Finkelshtein, Alex Iosevich, Vitali Vougalter, Yang Wang, Man Wah Wong, “An Open Problem in Complex Analytic Geometry Arising in Harmonic Analysis”, Math. Model. Nat. Phenom, 8:1 (2013), 230  crossref  mathscinet  zmath  isi  scopus  scopus
    4. Michael Ruzhansky, Mitsuru Sugimoto, Baoxiang Wang, Progress in Mathematics, 301, Evolution Equations of Hyperbolic and Schrödinger Type, 2012, 267  crossref
    5. Michael Ruzhansky, Mitsuru Sugimoto, “Weighted Sobolev L2 estimates for a class of Fourier integral operators”, Math. Nachr, 2011, n/a  crossref  mathscinet  isi  scopus  scopus
    6. Michael Ruzhansky, Mitsuru Sugimoto, Joachim Toft, Naohito Tomita, “Changes of variables in modulation and Wiener amalgam spaces”, Math. Nachr, 2011, n/a  crossref  mathscinet  isi  scopus  scopus
    7. Cattaneo A.S., Dherin B., Weinstein A., “Symplectic microgeometry II: generating functions”, Bulletin of the Brazilian Mathematical Society, 42:4 (2011), 507–536  crossref  mathscinet  zmath  isi  scopus  scopus
    8. Elena Cordero, Fabio Nicola, Luigi Rodino, “On the global boundedness of Fourier integral operators”, Ann Global Anal Geom, 2010  crossref  mathscinet  isi  scopus  scopus
    9. Coriasco S., Ruzhansky M., “On the boundedness of Fourier integral operators on L-p(R-n)”, Comptes Rendus Mathematique, 348:15–16 (2010), 847–851  crossref  mathscinet  zmath  isi  scopus
    10. Nicola F., “Boundedness of Fourier integral operators on Fourier Lebesgue spaces and affine fibrations”, Studia Mathematica, 198:3 (2010), 207–219  crossref  mathscinet  zmath  isi  scopus  scopus
    11. Matsuyama T., Ruzhansky M., “Asymptotic Integration and Dispersion for Hyperbolic Equations”, Advances in Differential Equations, 15:7–8 (2010), 721–756  mathscinet  zmath  isi
    12. M. V. Ruzhanskii, “Pointwise van der Corput Lemma for Functions of Several Variables”, Funct. Anal. Appl., 43:1 (2009), 75–77  mathnet  crossref  crossref  mathscinet  zmath  isi
    13. Matsuyama, T, “Time decay for hyperbolic equations with homogeneous symbols”, Comptes Rendus Mathematique, 347:15–16 (2009), 915  crossref  mathscinet  zmath  isi  scopus  scopus
    14. Ruzhansky M., “On Local and Global Regularity of Fourier Integral Operators”, New Developments in Pseudo-Differential Operators, Operator Theory : Advances and Applications, 189, 2009, 185–200  crossref  mathscinet  isi
    15. Michael Ruzhansky, James Smith, “Global time estimates for solutions to equations of dissipative type”, Journées équations aux dérivées partielles, 2008, 1  crossref
    16. Kamotski, I, “Regularity properties, representation of solutions, and spectral asymptotics of systems with multiplicities”, Communications in Partial Differential Equations, 32:1 (2007), 1  crossref  mathscinet  zmath  isi  scopus  scopus
    17. Kamotski I., Ruzhansky M., “Representation of solutions and regularity properties for weakly hyperbolic systems”, Pseudo-Differential Operators and Related Topics, Operator Theory : Advances and Applications, 164, 2006, 53–63  crossref  mathscinet  zmath  isi
    18. Ruzhansky M., Sugimoto M., “Global calculus of Fourier integral operators, weighted estimates, and applications to global analysis of hyperbolic equations”, Pseudo-Differential Operators and Related Topics, Operator Theory : Advances and Applications, 164, 2006, 65–78  crossref  mathscinet  zmath  isi
    19. I. V. Kamotskii, M. V. Ruzhansky, “Estimates and Spectral Asymptotics for Systems with Multiplicities”, Funct. Anal. Appl., 39:4 (2005), 308–310  mathnet  crossref  crossref  mathscinet  zmath  isi
    20. Tao T., “The weak-type (1,1) of Fourier integral operators of order (n1)/2”, J. Aust. Math. Soc., 76:1 (2004), 1–21  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:813
    Russian version PDF:309
    English version PDF:50
    References:126
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025