Citation:
B. M. Gurevich, “In ariant measures of dynamical systems of statistical mechanics and first integrals of Hamiltonian systems with finitely many degrees of freedom”, Russian Math. Surveys, 41:2 (1986), 201–202
\Bibitem{Gur86}
\by B.~M.~Gurevich
\paper In~ariant measures of dynamical systems of statistical mechanics and first integrals of Hamiltonian systems with finitely many degrees of freedom
\jour Russian Math. Surveys
\yr 1986
\vol 41
\issue 2
\pages 201--202
\mathnet{http://mi.mathnet.ru/eng/rm2054}
\crossref{https://doi.org/10.1070/RM1986v041n02ABEH003273}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=842173}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1986RuMaS..41..201G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1986G669200013}
Linking options:
https://www.mathnet.ru/eng/rm2054
https://doi.org/10.1070/RM1986v041n02ABEH003273
https://www.mathnet.ru/eng/rm/v41/i2/p193
This publication is cited in the following 6 articles:
H. P. McKean, K. L. Vaninsky, “Statistical mechanics of nonlinear wave equations”, Journal of Mathematical Sciences (New York), 94:4 (1999), 1630
H. P. Mc Kean, K. L. Vaninsky, Applied Mathematical Sciences, 100, Trends and Perspectives in Applied Mathematics, 1994, 239
B. M. Gurevich, “Gibbs random fields invariant under infinite-particle Hamiltonian dinamics”, Theoret. and Math. Phys., 90:3 (1992), 289–312
B. M. Gurevich, “Asymptotically additive integrals of motion of one-dimensional particles with an unpaired translation-invariant interaction”, Russian Math. Surveys, 45:6 (1990), 153–154
O. G. Martirosyan, “Invariant measures of one-dimensional dynamical systems of anharmonic oscillators”, Theoret. and Math. Phys., 76:2 (1988), 848–855
I. Yu. Musina, “Potential of Gibbs measure corresponding to steady solution of the BBGKY hierarchy for nonfinite interaction”, Theoret. and Math. Phys., 69:2 (1986), 1137–1146