Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1999, Volume 54, Issue 1, Pages 21–59
DOI: https://doi.org/10.1070/rm1999v054n01ABEH000116
(Mi rm116)
 

This article is cited in 45 scientific papers (total in 45 papers)

The geometry of stability regions in Novikov's problem on the semiclassical motion of an electron

I. A. Dynnikov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Received: 15.01.1999
Bibliographic databases:
Document Type: Article
UDC: 517.98
MSC: Primary 57R70; Secondary 58E05, 57R30, 81Q20, 81V10, 78A35
Language: English
Original paper language: Russian
Citation: I. A. Dynnikov, “The geometry of stability regions in Novikov's problem on the semiclassical motion of an electron”, Russian Math. Surveys, 54:1 (1999), 21–59
Citation in format AMSBIB
\Bibitem{Dyn99}
\by I.~A.~Dynnikov
\paper The geometry of stability regions in Novikov's problem on the semiclassical motion of an electron
\jour Russian Math. Surveys
\yr 1999
\vol 54
\issue 1
\pages 21--59
\mathnet{http://mi.mathnet.ru/eng/rm116}
\crossref{https://doi.org/10.1070/rm1999v054n01ABEH000116}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1706843}
\zmath{https://zbmath.org/?q=an:0935.57040}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1999RuMaS..54...21D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000082670200003}
\elib{https://elibrary.ru/item.asp?id=13857849}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0041031516}
Linking options:
  • https://www.mathnet.ru/eng/rm116
  • https://doi.org/10.1070/rm1999v054n01ABEH000116
  • https://www.mathnet.ru/eng/rm/v54/i1/p21
  • This publication is cited in the following 45 articles:
    1. A. Ya. Maltsev, S. P. Novikov, “Topology of dynamical systems on the Fermi surface and galvanomagnetic phenomena in normal metals”, Journal of Mathematical Physics, 65:7 (2024)  crossref
    2. A. Ya. Maltsev, “On the Novikov Problem with a Large Number of Quasiperiods and Its Generalizations”, Proc. Steklov Inst. Math., 325 (2024), 163–176  mathnet  crossref  crossref  zmath
    3. A. Ya. Mal'tsev, “OSOBENNOSTI τ -PRIBLIZhENIYa DLYa KhAOTIChESKIKh ELEKTRONNYKh TRAEKTORIY NA SLOZhNYKh POVERKhNOSTYaKh FERMI”, Žurnal èksperimentalʹnoj i teoretičeskoj fiziki, 166:3 (2024)  crossref
    4. A. Ya Mal'tsev, “Perekhody Lifshitsa i uglovye diagrammy provodimosti v metallakh so slozhnymi poverkhnostyami Fermi”, Žurnal èksperimentalʹnoj i teoretičeskoj fiziki, 164:5 (2023), 817  crossref
    5. Andreas Knauf, “Mini-course: Classical mechanics and transport”, Journal of Mathematical Physics, 64:8 (2023)  crossref
    6. A. Ya. Maltsev, “Lifshitz Transitions and Angular Conductivity Diagrams in Metals with Complex Fermi Surfaces”, J. Exp. Theor. Phys., 137:5 (2023), 706  crossref
    7. I. A. Dynnikov, A. Ya. Mal'tsev, S. P. Novikov, “Geometry of quasiperiodic functions on the plane”, Russian Math. Surveys, 77:6 (2022), 1061–1085  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    8. I. A. Dynnikov, A. Ya. Mal'tsev, S. P. Novikov, “Chaotic trajectories on fermi surfaces and nontrivial modes of behavior of magnetic conductivity”, J. Exp. Theor. Phys., 135 (2022), 240–254  mathnet  mathnet  crossref  crossref
    9. A. Ya. Maltsev, “Resonant contributions to oscillatory phenomena under conditions of magnetic breakdown during reconstructions of electron dynamics on the Fermi surface”, J. Exp. Theor. Phys., 135 (2022), 927–935  mathnet  mathnet  crossref  crossref
    10. Maltsev A.Ya., “Distinctive Features of Oscillatory Phenomena in Reconstructions of the Topological Structure of Electron Trajectories on Complex Fermi Surfaces”, J. Exp. Theor. Phys., 133:5 (2021), 599–611  crossref  isi
    11. Dynnikov I. Maltsev A., “Features of the Motion of Ultracold Atoms in Quasiperiodic Potentials”, J. Exp. Theor. Phys., 133:6 (2021), 711–736  crossref  isi
    12. Trans. Moscow Math. Soc., 82 (2021), 133–147  mathnet  crossref
    13. Maltsev A.Ya., “Reconstructions of the Electron Dynamics in Magnetic Field and the Geometry of Complex Fermi Surfaces”, J. Exp. Theor. Phys., 131:6 (2020), 988–1020  crossref  isi
    14. A. Ya. Maltsev, S. P. Novikov, “Topological integrability, classical and quantum chaos, and the theory of dynamical systems in the physics of condensed matter”, Russian Math. Surveys, 74:1 (2019), 141–173  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. De Leo R. Maltsev A.Y., “Quasiperiodic Dynamics and Magnetoresistance in Normal Metals”, Acta Appl. Math., 162:1 (2019), 47–61  crossref  isi
    16. Maltsev A.Ya., “the Complexity Classes of Angular Diagrams of the Metal Conductivity in Strong Magnetic Fields”, J. Exp. Theor. Phys., 129:1 (2019), 116–138  crossref  isi
    17. Novikov S.P. De Leo R. Dynnikov I.A. Maltsev A.Ya., “Theory of Dynamical Systems and Transport Phenomena in Normal Metals”, J. Exp. Theor. Phys., 129:4, SI (2019), 710–721  crossref  isi
    18. De Leo R., “A Survey on Quasiperiodic Topology”, Advanced Mathematical Methods in Biosciences and Applications, Steam-H Science Technology Engineering Agriculture Mathematics & Health, ed. Berezovskaya F. Toni B., Springer International Publishing Ag, 2019, 53–88  crossref  isi
    19. A. Ya. Maltsev, S. P. Novikov, “The theory of closed 1-forms, levels of quasiperiodic functions and transport phenomena in electron systems”, Proc. Steklov Inst. Math., 302 (2018), 279–297  mathnet  crossref  crossref  mathscinet  isi  elib
    20. Maltsev A.Ya., “The Second Boundaries of Stability Zones and the Angular Diagrams of Conductivity For Metals Having Complicated Fermi Surfaces”, J. Exp. Theor. Phys., 127:6 (2018), 1087–1111  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:819
    Russian version PDF:350
    English version PDF:47
    References:76
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025