Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2023, Volume 78, Issue 1, Pages 65–163
DOI: https://doi.org/10.4213/rm10063e
(Mi rm10063)
 

This article is cited in 5 scientific papers (total in 5 papers)

Left-invariant optimal control problems on Lie groups that are integrable by elliptic functions

Yu. L. Sachkov

Ailamazyan Program Systems Institute of Russian Academy of Sciences
References:
Abstract: Left-invariant optimal control problems on Lie groups are an important class of problems with a large symmetry group. They are theoretically interesting because they can often be investigated in full and general laws can be studied by using these model problems. In particular, problems on nilpotent Lie groups provide a fundamental nilpotent approximation to general problems. Also, left-invariant problems often arise in applications such as classical and quantum mechanics, geometry, robotics, visual perception models, and image processing.
The aim of this paper is to present a survey of the main concepts, methods, and results pertaining to left-invariant optimal control problems on Lie groups that can be integrated by elliptic functions. The focus is on describing extremal trajectories and their optimality, the cut time and cut locus, and optimal synthesis.
Bibliography: 162 titles.
Keywords: optimal control, geometric control theory, left-invariant problems, sub-Riemannian geometry, Lie groups, optimal synthesis, elliptic functions.
Funding agency Grant number
Russian Science Foundation 22-11-00140
The work was supported by the Russian Science foundation under grant no. 22-11-00140, https://rscf.ru/project/22-11-00140/.
Received: 14.06.2022
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: Primary 53C17; Secondary 22E25, 49K15
Language: English
Original paper language: Russian

1. Preface

Studying left-invariant control systems on Lie groups and homogeneous spaces is one of the central topics in geometric control theory. This is a natural and important class of systems from the theoretical standpoint, for which an interesting global theory can be developed (such systems arise, for example, when we consider a local nilpotent approximation to smooth systems). On the other hand, such systems can model a number of applied problems (rotation and rolling of rigid bodies, robot motion, quantum mechanics, computer vision).

It is well known that it is very difficult to find an explicit solution of a global non-linear control problem (for example, a problem of controllability or an optimal control problem) when it does not have a large symmetry group. For invariant problems on Lie groups (and their projections onto homogeneous spaces) we can often find an explicit solution by means of the methods of geometric control theory and using the techniques of differential geometry and the theory of Lie groups and algebras. The resulting solution of the invariant problem can be a good approximation to the cor- responding non-linear problem. For instance, the invariant sub-Riemannian geometry of the Heisenberg group is the cornerstone of all sub-Riemannian geometry.

The two main problems considered for left-invariant systems are the controllability problem and the optimal control problem. There are many publications concerning the controllability problem, for instance, [128].

In this survey we consider only problems integrable by elliptic functions. Problems integrable by elementary functions were considered in [143].

2. Problems integrable by elliptic functions and integrals

2.1. Elliptic integrals and functions

Standard references on elliptic integrals and functions are [8], [98], and [162]. Below we provide some minimal information about these that is necessary for the next sections.

Elliptic integrals in the Jacobi form: Legendre elliptic integrals of the first kind

F(φ,k)=φ0dt1k2sin2t,
integrals of the second kind
E(φ,k)=φ01k2sin2tdt,
integrals of the third kind
Π(m;φ,k)=φ0dt(1+msin2t)1k2sin2t;
here and in what follows the elliptic modulus k lies in the interval (0,1). The complementary modulus is k=1k2 .

The complete elliptic integrals are

K(k)=F(π2,k)andE(k)=E(π2,k).

Jacobi elliptic functions:

φ=am(u,k)    u=F(φ,k),sn(u,k)=sinam(u,k),cn(u,k)=cosam(u,k),dn(u,k)=1k2sn2(u,k),E(u,k)=E(amu,k).
In the notation for elliptic functions the modulus K is often dropped.

Standard formulae. Derivatives and integrals:

amu=dnu,snu=cnudnu,cnu=snudnu,dnu=k2snucnu
and
u0dn2tdt=E(u).

Degenerate cases:

k+0    snusinu,  cnucosu,  dnu1,  E(u)u;k10    snutanhu,  cnu1chu,  dnu1coshu,  E(u)tanhu.

2.2. A mathematical pendulum

In all sub-Riemannian problems presented in §§ 2.32.10 the vertical subsystem of the Hamiltonian system of the Pontryagin maximum principle reduces mysteriously to the pendulum equation, so that all of them are integrated by elliptic functions and integrals.

2.2.1. The pendulum equation and its solution

Consider a mathematical pendulum, which is a point mass fixed on a weightless inextensible rod of length L, which rotates freely in a vertical plane about the point of suspension. Let θ denote the angle between the pendulum and its downward vertical position. Then the motion of the pendulum satisfies the equations

˙θ=c,˙c=rsinθ,
where r=g/L>0 and g is the gravitational acceleration. The total energy of the pendulum (which is a first integral of equations (2.1)) is
E=c22rcosθ[r,+).
The motion pattern of the pendulum is determined by the value of E:

We have described above the motion pattern of the pendulum (2.1) for r=g/L>0. On the other hand, if r=0 (which can be interpreted as the absence of gravitational forces), then

The case r<0 (when the gravitational force is upward) reduces to r>0 after the substitution (θ,c,r)(θ+π,c,r).

2.2.2. Straightening coordinates

For r>0 the phase cylinder of the pendulum system (2.1),

C={(θ,c)θS1, cR},S1=R/2πZ,
is stratified depending on the motion pattern:
C=5i=1Ci,
where
C1={(θ,c)CE(r,r)},C2={(θ,c)CE>r},C3={(θ,c)CE=r, c0},C4={(θ,c)Cc=0, θ=0},C5={(θ,c)Cc=0, θ=π}.
In the domains C1, C2, and C3 we can introduce coordinates (φ,k) straightening the equation of the pendulum.

If (θ,c)C1, then set

k=E+r2r(0,1),rφ[0,4K(k)] mod4K(k),sinθ2=ksn(rφ,k),cosθ2=dn(rφ,k),c=2krcn(rφ,k).
If (θ,c)C2, then set
k=2rE+r(0,1),rφ[0,2kK(k)] mod2kK(k),sinθ2=±sn(rφk,k),cosθ2=cn(rφk,k),c=±2rkdn(rφk,k),±=signc.
If (θ,c)C3, then set
k=1,φR,sinθ2=±tanh(rφ),cosθ2=1cosh(rφ),c=±2rcosh(rφ),±=signc.

In the coordinates (φ,k) the pendulum equation (2.1) ‘straightens out’:

˙φ=1,˙k=0,
so its solution is
φt=φ+t,kconst.
We use these straightening coordinates and modifications of these to parametrize the extremal trajectories in §§ 2.42.10.

2.2.3. Bibliographic comments

Subsection 2.2.1 is based on [8], while § 2.2.2 is based on [123] (also see [98], [142], and [162]).

2.3. Martinet flat sub-Riemannian problem

2.3.1. The statement of the problem

The Martinet flat sub-Riemannian structure is defined by the metric ds2=dx2+dy2 on the Martinet distribution Δ={dz(1/2)y2dx=0} in M=R3x,y,z. An orthonormal frame can be taken in the form

X1=x+y22z,X2=y.
Let X3=/z; then the Lie algebra generated by the fields X1 and X2 has the multiplication table
[X1,X2]=yX3,[X2,[X1,X2]]=X3,[X1,[X1,X2]]=0,adX3=0,
so that this is the Engel algebra (see § 2.9).

The Martinet flat sub-Riemannian structure is not left invariant, but we include it in our survey because it plays a special role in sub-Riemannian geometry:

Moreover, the Martinet flat sub-Riemannian structure is a quotient of the left- invariant sub-Riemannian structure on the Engel group (see § 2.9), so the Hamiltonian system for Martinet extremals reduces to the pendulum equation, and the extremals themselves project onto the (x,y)-plane as Euler elasticae (see § 2.6).

The optimal control problem for the Martinet flat sub-Riemannian structure has the following form:

˙q=u1X1+u2X2,q=(x,y,z)R3,u=(u1,u2)R2,q(0)=q0,q(t1)=q1,J=12t10(u21+u22)dtmin.

2.3.2. The Pontryagin maximum principle

Proposition 2.1. The abnormal trajectories are {y=0, z=z0}. They are non-strictly abnormal.

Normal extremals are trajectories of the Hamiltonian field with Hamiltonian

H=12(h21+h22)=12[(px+y22pz)2+p2y],
where (px,py,pz) are the canonical coordinates of a covector λTM and hi(λ)=λ,Xi(q), i=1,2,3. The corresponding Hamiltonian system ˙λ=H(λ) has the form
˙x=px+y22pz,˙px=0,˙y=py,˙py=(px+y22pz)pzy,˙z=(px+y22pz)y22,˙pz=0,
that is,
˙x=h1,˙h1=yh2h3,˙y=h2,˙h2=yh1h3,˙z=y22h1,˙h3=0.

We consider extremals on the level surface {H=1/2}, on which we introduces the coordinates

h1=cosθ,h2=sinθ,andh3=c.

2.3.3. Symmetries

Reflections. The sub-Riemannian structure (Δ,ds2) is invariant under the group of reflections

Sym={Id,ε1,ε2,ε3}Z2×Z2,ε1:(x,y,z)(x,y,z),(θ,c)(πθ,c),ε2:(x,y,z)(x,y,z),(θ,c)(θ,c),ε3:(x,y,z)(x,y,z),(θ,c)(θπ,c).

Dilations. The Hamiltonian system (2.2) is invariant under the one-parameter group of dilations

(x,y,z)(δ1x,δ1y,δ3z),(h1,h2,h3)(δ1h1,δ1h2,δh3).

2.3.4. A parametrization of geodesics

We assume below that q0=0.

Proposition 2.2. Geodesics with natural parametrization issuing from the point q0=0 are the curves

xt=t+2c(E(u)E(k)),yt=2kccnu,zt=23c3/2[(2k21)(E(u)E(k))+k2tc+2k2snucnudnu],
where u=K+tc , k=sin(π/4θ/2), θ(π/2,π/2), and c>0, and the curves
xt=tsinθ,yt=tcosθ,zt=t36sinθcos2θ,
where θ(π/2,π/2], and also the curves obtained from the above ones by means of the symmetries ε1 and ε2.

Let Exp denote the exponential map

Exp:C×R+M,(λ,t)qt=πetH(λ),
where
C=Tq0M{H=12}.

2.3.5. Conjugate time

If a geodesic is strictly normal and its projection onto the (x,y)-plane is a straight line, then this geodesic is optimal and therefore free from conjugate points. In the abnormal case the geodesic is optimal but consists of conjugate points.

Let λ=(θ,c)C, and assume that a geodesic qt=Exp(λ,t) does not project onto the (x,y)-plane as a straight line. Because of the symmetries ε1 and ε2, we can assume that c>0 and θ(π/2,π/2). Then the first conjugate time is

t1conj(λ)=min{t>0v2c1(v)+vc2(v)+c3(v)=0},
where
c1(v)=k2cnvdnv,c2(v)=k2snv2k2E(v)cnvdnv,c3(v)=E2(v)cnvdnvE(v)snv
and v=tc .

Theorem 2.1. Let qt=Exp(λ,t), λC, t>0, be a geodesic whose projection onto the (x,y)-plane is not a straight line. Then

t1conj(λ)(2K|c|,3K|c|).

As approximate calculations show, the ratio t1conj|c|/(3K) is roughly a constant, which is equal to 0.97.

2.3.6. The cut time and cut locus

Theorem 2.2. The geodesics whose projections onto the (x,y)-plane are straight lines are length minimizers. Given a geodesic qt=Exp(λ,t), λC, t>0, whose projection onto the same plane is not a straight line, the cut time on it is tcut(λ)=2K/|c| and corresponds to its first intersection with the Martinet plane {y=0}.

The cul locus is

Cut={qMy=0, z0}.
This set is disjoint from the first caustic.

2.3.7. A sphere and a wavefront

Dilations take different spheres with centre q0=0 to one another, so we can limit ourselves to considering the unit sphere

S={qMd(q0,q)=1}.
It is shown in Fig. 1 in the coordinates (x,y,v), v=zxy2/6.

Theorem 2.3. The intersection of the sphere S with the cut locus (see Fig. 2) is the curve kγ(k) in the Martinet plane {y=0} given by the parametric equations

x(k)=1+2E(k)K(k),
z(k)=16K3(k)[(2k21)E(k)+k2K(k)],
where k(0,1), plus the curve obtained from γ by applying the symmetry ε2|{y=0}: (x,z)(x,z).

As k+0, the curve γ becomes the restriction of the graph of an analytic function

z=23π2(x1)+o(x1),x10,
to the half-plane {z>0}.

As k10, γ becomes the graph of a non-analytic smooth function

z=X36+F(X),X=x+12,
where F is the flat function
F(X)=4X3e2/X+o(X3e2/X),X+0.

Theorem 2.4. The intersection of the sphere S with the Martinet plane is not subanalytic, so S is not subanalytic either.

Consider the unit-time wavefront from q0:

W={qMq=Exp(λ,1), λC};
other wavefronts from q0 can be obtained from it by dilations.

Theorem 2.5. The intersection of the wavefront W with the Martinet plane {y=0} and the half-space {z>0} is a union of curves γn, nN, whose closure has two branch points x=±1, z=0. Each γn is defined by the parametric equations

xn(k)=1+2E(k)K(k),zn(k)=16n2K3(k)[(2k21)E(k)+k2K(k)].
In a neighbourhood of x=1, z=0 this curve is the graph of a function
z=16n2X3+F(X),
where F(X)=αX3e2/X+o(X3e2/X), α0, and in a neighbourhood of x=1, z=0 it is the graph of a function
z=23n2π2(x1)+o(x1).
The outer curve γ1 is the intersection γ of the sphere with the Martinet plane {y=0} and the half-space {z>0} (see Theorem 2.3).

The intersection of S with the Martinet plane and the half-space {z>0} is the curve given parametrically by k(x(k),z(k)), k(0,1) (see (2.3) and (2.4)). It extends to {z by continuity by letting k\in [0,1]. The resulting curve is semianalytic for k \ne 1. However, it is not semianalytic at k=1, so it is not subanalytic.

Theorem 2.6. In a neighbourhood of the point X=0, where X=(x+1)/2, the intersection of the sphere S with the Martinet plane \{y=0\} and the half-plane \{z \geqslant 0\} is the graph of a function of the form

\begin{equation*} z=F\biggl(X,\frac{e^{-1/X}}{X^2}\biggr), \end{equation*} \notag
where X \geqslant 0 and F is an analytic map from a neighbourhood of (0,0) \in \mathbb{R}^2 to \mathbb{R}.

Hence the intersection of S with the Martinet plane is a curve in the \exp-\log- category [65], [101].

2.3.8. Bibliographic comments

This section is based on [3].

2.4. Sub-Riemannian problem on the group \operatorname{SE}(2) of Euclidean planar motions

2.4.1. The problem statement

The mechanical setting. Consider the problem of optimal motion for a kinematic model of a mobile robot in the plane. The state of the robot is described by its position on the plane (x,y) \in \mathbb{R}^2 and the angle \theta\in 2\pi \mathbb{Z} of its orientation relative to the positive direction of the x-axis. The robot can move at an arbitrary linear velocity u_1 \in \mathbb{R}, rotating at an arbitrary angular velocity u_2\in\mathbb{R} in the process. The problem is to take the robot from an initial state g_0=(x_0,y_0,\theta_0) to a terminal state g_1=(x_1, y_1, \theta_1) along a shortest path in the state space. The length of a path in the state space \mathbb{R}^2_{x, y}\times S^1_{\theta} is measured by the integral \displaystyle\int_0^{t_1}(\dot x^2+\dot y^2+\alpha^2\dot\theta^2)^{1/2}\,dt, where \alpha>0 is a prescribed positive number determining a balance between the linear and angular velocity.

The optimal control problem and its normalization. The above problem about a mobile robot can be formalized as an optimal control problem:

\begin{equation*} \begin{gathered} \, \dot x=u_1 \cos\theta, \quad \dot y=u_1 \sin \theta, \quad \dot\theta=u_2, \\ g=(x, y, \theta) \in \mathbb{R}^2_{x,y}\times S^1_{\theta}, \quad u=(u_1, u_2)\in\mathbb{R}^2, \\ g(0)=g_0, \quad g(t_1)=g_1, \\ l=\int_0^{t_1}\sqrt{u_1^2+\alpha^2u_2^2}\,\, dt \to \min. \end{gathered} \end{equation*} \notag
After scaling in the (x,y)-plane,
\begin{equation*} (x,y,\theta) \mapsto \biggl(\frac{x}{\alpha}\,, \frac{y}{\alpha}\,,\theta\biggr),\quad (u_1, u_2)\mapsto \biggl(\frac{u_1}{\alpha}\,,u_2\biggr), \end{equation*} \notag
we can reduce this problem to the case when \alpha=1.

Using parallel translations and rotating the (x,y)-plane we can achieve that g_0=(0,0,0).

As a result, we obtain the optimal control problem

\begin{equation} \dot x=u_1 \cos \theta, \quad \dot y=u_1 \sin \theta, \quad \dot \theta=u_2, \end{equation} \tag{2.5}
\begin{equation} g=(x, y, \theta) \in \mathbb{R}^2_{x, y}\times S^1_{\theta}, \qquad u=(u_1, u_2)\in \mathbb{R}^2, \end{equation} \tag{2.6}
\begin{equation} g(0)=g_0=(0, 0, 0), \quad g(t_1)= g_1=(x_1, y_1, \theta_1), \end{equation} \tag{2.7}
\begin{equation} l=\int_0^{t_1}\sqrt{u_1^2+u_2^2}\, dt \to \min. \end{equation} \tag{2.8}
This is the sub-Riemannian problem specified by the orthonormal frame
\begin{equation} X_1=\cos\theta\,\frac{\partial}{\partial x}+ \sin \theta\,\frac{\partial}{\partial y}\,, \quad X_2=\frac{\partial}{\partial \theta}\,. \end{equation} \tag{2.9}

The group of plane motions. The group G=\operatorname{SE}(2) of proper Euclidean motions of the plane is a semidirect product of the group of parallel translations \mathbb{R}^2 and the group of rotations \operatorname{SO}(2):

\begin{equation*} \operatorname{SE}(2)=\mathbb{R}^2 \rtimes \operatorname{SO}(2). \end{equation*} \notag
It has the linear representation
\begin{equation*} \operatorname{SE}(2)=\left\{\begin{pmatrix} \cos \theta &-\sin \theta & x \\ \sin \theta &\hphantom{-} \cos \theta & y \\ 0 & 0 & 1 \end{pmatrix}\ \bigg|\ \theta \in S^1= \mathbb{R}/2\pi\mathbb{Z}, \ x,y \in \mathbb{R}\right\}. \end{equation*} \notag
We can calculate the action of a motion g=(x, y, \theta) on a vector (a, b) \in \mathbb{R}^2 using matrix multiplication:
\begin{equation*} \begin{pmatrix} \cos \theta & -\sin \theta & x \\ \sin \theta & \hphantom{-}\cos \theta & y \\ 0 & 0 & 1 \end{pmatrix}\cdot \begin{pmatrix} a \\ b \\ 1 \end{pmatrix}=\begin{pmatrix} a \cos \theta-b \sin\theta+x \\ a\sin\theta+b\cos \theta+y \\ 1 \end{pmatrix}, \end{equation*} \notag
so that
\begin{equation*} g\colon (a,b) \mapsto (a\cos\theta-b\sin\theta+x, \ a\sin\theta+b \cos\theta+y). \end{equation*} \notag

The Lie algebra of the group \operatorname{SE}(2) is

\begin{equation*} \mathfrak{g}=\mathfrak{se}(2)=\operatorname{span}(E_{21}-E_{12},E_{13},E_{23}), \end{equation*} \notag
where E_{ij} is the 3\times 3 matrix containing a unique non-trivial entry, namely, 1 in row i and column j. Basis left-invariant vector fields on \operatorname{SE}(2) are
\begin{equation*} \begin{gathered} \, X_1=g E_{13}=\cos\theta\,\frac{\partial}{\partial x}+ \sin \theta\,\frac{\partial}{\partial y}\,, \\ X_2=g(E_{21}-E_{12})=\frac{\partial}{\partial \theta}\,, \end{gathered} \end{equation*} \notag
and
\begin{equation*} X_3=- g E_{23}=\sin\theta\,\frac{\partial}{\partial x}- \cos \theta\,\frac{\partial}{\partial y} \end{equation*} \notag
and their multiplication table is
\begin{equation} [X_1,X_2]=X_3, \quad [X_2,X_3]=X_1, \quad [X_1,X_3]=0. \end{equation} \tag{2.10}

The orthonormal frame (2.9) for the sub-Riemannian problem (2.5)(2.8) consists of left-invariant fields, so this is a left-invariant sub-Riemannian problem on the group G=\operatorname{SE}(2).

According to the Agrachev–Barilari classification [1], this is the unique, up to local isometries, totally non-holonomic sub-Riemannian problem on \operatorname{SE}(2); the corresponding invariants are \chi=\kappa=1.

That optimal controls exist in (2.5)(2.8) is a consequence of the Rashevskii–Chow and Filippov theorems: the system has full rank because

\begin{equation*} \mathfrak{g}=\operatorname{span}(X_1,X_2,X_3), \qquad X_3=[X_1,X_2]. \end{equation*} \notag

2.4.2. The Pontryagin maximum principle

Abnormal trajectories are constant in time.

Normal extremals are trajectories of the Hamiltonian system \dot\lambda=\vec H(\lambda), \lambda \in T^*G, where H=(h_1^2+h_2^2)/2, h_i(\lambda)=\langle \lambda,X_i \rangle, i=1,2,3. We can write this system in coordinates as follows:

\begin{equation} \begin{alignedat}{3} \dot h_1&=- h_2 h_3, &\quad \dot h_2&=h_1 h_3, &\quad \dot h_3&=h_1 h_2, \\ \dot x&=h_1 \cos \theta, &\quad \dot y&=h_1 \sin \theta, &\quad \dot \theta&=h_2. \nonumber \end{alignedat} \end{equation} \tag{2.11}
On the level surface \{H=1/2\}, in the coordinates (\gamma, c), where
\begin{equation*} h_1=\sin \frac{\gamma}{2}\,, \quad h_2=-\cos \frac{\gamma}{2}\,, \quad\text{and}\quad c=2h_3, \end{equation*} \notag
the vertical subsystem (2.11) of this Hamiltonian system takes the form of a two- sheeted cover of the pendulum system:
\begin{equation} \dot\gamma=c, \quad \dot c=-\sin\gamma, \quad (\gamma,c) \in C=\mathfrak{g}^*\cap\biggl\{H=\frac{1}{2}\biggr\} \cong (2S^1_{\gamma})\times \mathbb{R}_c, \quad 2S^1=\mathbb{R}/4\pi\mathbb{Z}. \end{equation} \tag{2.12}
A first integral of this equation is equal to the energy of the pendulum
\begin{equation} E=\frac{c^2}{2}-\cos \gamma \in [-1,+\infty). \end{equation} \tag{2.13}

The symplectic foliation. The Lie coalgebra \mathfrak{g}^* possesses a Casimir function F=h_1^2+h_3^2. The symplectic foliation consists of the circular cylinders \{h_1^2+h_3^2=\operatorname{const} > 0\} and the points \{h_1=h_3=0, \ h_2=\operatorname{const}\}.

The energy of the pendulum is a linear combination of the Casimir function and the Hamiltonian:

\begin{equation*} E=2F-2H. \end{equation*} \notag

Stratification of the cylinder C and straightening coordinates. The cylinder C is subdivided into invariant sets of the pendulum (2.12) by critical level curves of the energy E:

\begin{equation} \begin{aligned} \, C&=\bigsqcup_{i=1}^5 C_i, \\ C_1&=\{\lambda \in C \mid E \in (-1, 1) \}, \nonumber \\ C_2&=\{\lambda \in C \mid E \in (1,+\infty) \}, \nonumber \\ C_3&=\{\lambda \in C \mid E =1, \ c \ne 0 \}, \nonumber \\ C_4&=\{\lambda \in C \mid E=- 1 \}= \{ (\gamma, c) \in C \mid \gamma=2 \pi n, \ c=0 \}, \nonumber \\ C_5&=\{\lambda \in C \mid E=1, \ c=0 \}= \{ (\gamma, c) \in C \mid \gamma=\pi+2 \pi n, \ c=0 \}, \nonumber \end{aligned} \end{equation} \tag{2.14}
where n \in \mathbb{Z}.

For the regular integration of the pendulum equation (2.12), on the strata C_1, C_2, and C_3 we introduce variables (\varphi, k) which straighten this equation.

If \lambda=(\gamma, c) \in C_1, then

\begin{equation*} \begin{gathered} \, k=\sqrt{\frac{E+1}{2}}= \sqrt{\sin^2 \frac{\gamma}{2}+\frac{c^2}{4}} \in (0,1), \\ \sin \frac{\gamma}{2}=s_1 k \operatorname{sn}(\varphi,k), \qquad s_1=\operatorname{sign} \cos\frac{\gamma}{2}\,, \\ \cos \frac{\gamma}{2}=s_1 \operatorname{dn}(\varphi,k), \\ \frac{c}{2}=k \operatorname{cn}(\varphi,k), \qquad \varphi \in [0, 4 K(k)]. \end{gathered} \end{equation*} \notag

If \lambda=(\gamma, c) \in C_2, then

\begin{equation*} \begin{gathered} \, k=\sqrt{\frac{2}{E+1}}=\frac{1}{\sqrt{\sin^2(\gamma/2)+c^2/4}} \in (0,1), \\ \sin \frac{\gamma}{2}= s_2 \operatorname{sn}\biggl(\frac{\varphi}{k}\,,k\biggr), \qquad s_2=\operatorname{sign} c, \\ \cos \frac{\gamma}{2}=\operatorname{cn}\biggl(\frac{\varphi}{k}\,,k\biggr), \\ \frac{c}{2}= \frac{s_2}{k}\operatorname{dn}\biggl(\frac{\varphi}{k}\,,k\biggr), \qquad \varphi \in [0,4 k K(k)]. \end{gathered} \end{equation*} \notag

If \lambda=(\gamma,c) \in C_3, then

\begin{equation*} \begin{gathered} \, k=1, \\ \sin \frac{\gamma}{2}=s_1 s_2 \tanh \varphi, \qquad s_1=\operatorname{sign} \cos\frac{\gamma}{2}\,, \quad s_2=\operatorname{sign} c, \\ \cos \frac{\gamma}{2}=\frac{s_1}{\cosh \varphi}\,, \\ \frac{c}{2}=\frac{s_2}{\cosh \varphi}\,, \qquad \varphi \in (-\infty, +\infty). \end{gathered} \end{equation*} \notag

The pendulum flow (2.12) straightens out in the variables (\varphi,k):

\begin{equation*} \dot \varphi=1, \quad \dot k=0, \qquad \lambda=(\varphi,k) \in \bigcup_{i=1}^3 C_i. \end{equation*} \notag

A parametrization on geodesics. If \lambda=(\varphi,k) \in C_1, then \varphi_t=\varphi+t and

\begin{equation*} \begin{gathered} \, \begin{aligned} \, \cos \theta_t&=\operatorname{cn} \varphi \operatorname{cn} \varphi_t+ \operatorname{sn} \varphi \operatorname{sn} \varphi_t, \\ \sin \theta_t&=s_1(\operatorname{sn} \varphi \operatorname{cn} \varphi_t- \operatorname{cn} \varphi \operatorname{sn} \varphi_t),\\ \theta_t&=s_1(\operatorname{am} \varphi- \operatorname{am} \varphi_t)\operatorname{mod}{2\pi}, \end{aligned} \\ \begin{aligned} \, x_t&=\frac{s_1}{k}[\operatorname{cn}\varphi(\operatorname{dn}\varphi- \operatorname{dn}\varphi_t)+\operatorname{sn} \varphi(t+\operatorname{E}(\varphi)-\operatorname{E}(\varphi_t))], \\ y_t&=\frac{1}{k}[\operatorname{sn}\varphi(\operatorname{dn}\varphi- \operatorname{dn}\varphi_t)-\operatorname{cn}\varphi(t+ \operatorname{E}(\varphi)-\operatorname{E}(\varphi_t))]. \end{aligned} \end{gathered} \end{equation*} \notag

If \lambda \in C_2, then

\begin{equation*} \begin{gathered} \, \begin{aligned} \, \cos \theta_t&=k^2 \operatorname{sn} \psi \operatorname{sn} \psi_t+ \operatorname{dn} \psi \operatorname{dn} \psi_t, \\ \sin \theta_t&=k(\operatorname{sn} \psi \operatorname{dn} \psi_t- \operatorname{dn} \psi \operatorname{sn} \psi_t), \end{aligned} \\ \begin{aligned} \, x_t&=s_2 k\biggl[\operatorname{dn} \psi(\operatorname{cn} \psi- \operatorname{cn} \psi_t)+\operatorname{sn} \psi\,\biggl(\frac{t}{k}+ \operatorname{E}(\psi)-\operatorname{E}(\psi_t)\biggr)\biggr], \\ y_t&=s_2\biggl[k^2\operatorname{sn} \psi (\operatorname{cn} \psi- \operatorname{cn} \psi_t)-\operatorname{dn} \psi\,\biggl(\frac{t}{k}+ \operatorname{E}(\psi)-\operatorname{E}(\psi_t)\biggr)\biggr], \end{aligned} \end{gathered} \end{equation*} \notag
where \psi=\varphi/k and \psi_t=\varphi_t/k=\psi+t/k.

If \lambda=(\varphi,k) \in C_3 for k=1, then \varphi_t=\varphi+t, and

\begin{equation*} \begin{gathered} \, \begin{aligned} \, \cos \theta_t&=\frac{1}{\cosh \varphi\cosh \varphi_t}+ \tanh \varphi\tanh \varphi_t, \\ \sin \theta_t&= s_1\biggl(\frac{\tanh \varphi}{\cosh \varphi_t}- \frac{\tanh \varphi_t}{\cosh \varphi}\biggr), \end{aligned} \\ \begin{aligned} \, x_t&=s_1 s_2\biggl[\frac{1}{\cosh \varphi} \biggl(\frac{1}{\cosh \varphi}- \frac{1}{\cosh \varphi_t}\biggr)+\tanh \varphi\, (t+\tanh \varphi-\tanh \varphi_t)\biggr], \\ y_t&=s_2\biggl[\tanh \varphi\, \biggl(\frac{1}{\cosh \varphi}- \frac{1}{\cosh \varphi_t}\biggr)-\frac{1}{\cosh \varphi} (t+\tanh \varphi-\tanh \varphi_t)\biggr]. \end{aligned} \end{gathered} \end{equation*} \notag

If \lambda \in C_4, then

\begin{equation*} \theta_t=-s_1 t, \qquad x_t=0, \qquad y_t=0. \end{equation*} \notag

If \lambda \in C_5, then

\begin{equation*} \theta_t=0, \qquad x_t=t\operatorname{sign}\sin\frac{\gamma}{2}\,, \qquad y_t=0. \end{equation*} \notag

We show the projections of geodesics onto the (x,y)-plane in cases C_1, C_2, and C_3 in Figs. 3, 4, and 5, respectively.

2.4.3. Symmetries and Maxwell strata

The phase portrait of the pendulum system (2.12) is invariant under the symmetry group \operatorname{Sym} generated by the reflections of the cylinder C in the \gamma- and c-coordinate axes and in the origin (\gamma,c)=(0,0) and the rotation through 2\pi:

\begin{equation*} \operatorname{Sym}=\{\operatorname{Id},\varepsilon^1,\dots,\varepsilon^7\} \cong \mathbb{Z}_2\times\mathbb{Z}_2\times\mathbb{Z}_2, \end{equation*} \notag
where
\begin{equation*} \begin{aligned} \, \varepsilon^1\colon (\gamma,c)&\to (\gamma,-c), \\ \varepsilon^2\colon (\gamma,c)&\to (-\gamma,c), \\ \varepsilon^3\colon (\gamma,c)&\to (-\gamma,-c), \\ \varepsilon^4\colon (\gamma,c)&\to (\gamma+2 \pi,c), \\ \varepsilon^5\colon (\gamma,c)&\to (\gamma+2 \pi,-c), \\ \varepsilon^6\colon (\gamma,c)&\to (-\gamma+2 \pi,c), \\ \varepsilon^7\colon (\gamma,c)&\to (-\gamma+2 \pi,-c). \end{aligned} \end{equation*} \notag

These symmetries extend in the natural way to the source space and target space of the exponential map.

If \nu=(\lambda,t)=(\gamma,c,t) \!\in\! N=C \times \mathbb{R}_+, then \varepsilon^i(\nu)=\nu^i=(\lambda^i,t)=(\gamma^i,c^i,t)\! \in\! N and

\begin{equation*} \begin{aligned} \, (\gamma^1,c^1)&=(\gamma_t, -c_t), \\ (\gamma^2,c^2)&=(-\gamma_t, c_t), \\ (\gamma^3,c^3)&=(-\gamma, -c), \\ (\gamma^4,c^4)&=(\gamma+2 \pi, c), \\ (\gamma^5,c^5)&=(\gamma_t+2 \pi, -c_t), \\ (\gamma^6,c^6)&=(-\gamma_t+ 2 \pi, c_t), \\ (\gamma^7,c^7)&=(-\gamma, -c). \end{aligned} \end{equation*} \notag

If g=(x,y,\theta) \in G, then g^i=\varepsilon^i(g)=(x^i,y^i,\theta^i) \in G, where

\begin{equation*} \begin{aligned} \, (x^1,y^1,\theta^1)&=(x \cos \theta+y \sin \theta, x \sin \theta- y \cos \theta, \theta), \\ (x^2,y^2,\theta^2)&=(-x \cos \theta- y \sin \theta, -x \sin \theta+y \cos \theta, \theta), \\ (x^3,y^3,\theta^3)&=(-x, -y, \theta), \\ (x^4,y^4,\theta^4)&=(-x, y, -\theta), \\ (x^5,y^5,\theta^5)&=(-x \cos \theta-y \sin \theta, x \sin \theta- y \cos \theta, -\theta), \\ (x^6,y^6,\theta^6)&=(x \cos \theta+y \sin \theta, -x \sin \theta+ y \cos \theta, -\theta), \\ (x^7,y^7,\theta^7)&=(x, -y, -\theta). \end{aligned} \end{equation*} \notag

Proposition 2.3. The group \operatorname{Sym}= \{\operatorname{Id},\varepsilon^1,\dots,\varepsilon^7\} is a subgroup of the symmetry group of the exponential map.

Theorem 2.7. For almost all geodesics the first Maxwell time corresponding to the symmetry group \operatorname{Sym} has the following expression:

\begin{equation*} \begin{aligned} \, \lambda \in C_1 &\quad\Longrightarrow\quad t_{\rm Max}^1(\lambda)=2K(k), \\ \lambda \in C_2 &\quad\Longrightarrow\quad t_{\rm Max}^1(\lambda)=2kp_1^1(k), \\ \lambda \in C_3 &\quad\Longrightarrow\quad t_{\rm Max}^1(\lambda)=+\infty, \\ \lambda \in C_4 &\quad\Longrightarrow\quad t_{\rm Max}^1(\lambda)=\pi, \\ \lambda \in C_5 &\quad\Longrightarrow\quad t_{\rm Max}^1(\lambda)=+\infty, \end{aligned} \end{equation*} \notag
where p=p_1^1(k) \in (K(k),2K(k)) is the first positive zero of the function
\begin{equation*} f_1(p,k)=\operatorname{cn}p(\operatorname{E}(p)-p)- \operatorname{dn} p \operatorname{sn} p. \end{equation*} \notag

Remark 2.1. If for a geodesic the first Maxwell time corresponding to the group \operatorname{Sym} is distinct from t_{\rm Max}^1, then it is larger than this quantity, while t_{\rm Max}^1 is the first conjugate time.

Let \vec H_v denote the vertical component of the Hamiltonian vector field \vec H corresponding to the ordinary differential equation (2.11).

2.4.4. Estimates for the conjugate time

Theorem 2.9. (1) If \lambda \in C_1\cup C_3\cup C_4\cup C_5, then t_{\rm conj}^1(\lambda)=+\infty.

(2) If \lambda \in C_2, then t_{\rm conj}^1(\lambda)\in [2kp_1^1,4kK].

(3) Therefore, t_{\rm conj}^1(\lambda) \geqslant t_{\rm Max}^1(\lambda) for all \lambda \in C.

2.4.5. The diffeomorphism structure of the exponential map

Consider a subset of the state space that contains no fixed points of the maps \varepsilon^i:

\begin{equation*} \begin{gathered} \, \widetilde G=\{g \in G \mid \varepsilon^i(g) \ne g, \ i=1,\dots,7\}= \{g \in G \mid R_1(g) R_2(g)\sin\theta\ne 0\}, \\ \text{where } R_1=y\cos \frac{\theta}{2}-x \sin\frac{\theta}{2} \quad\text{and}\quad R_2=x \cos \frac{\theta}{2}+y\sin\frac{\theta}{2}\,, \end{gathered} \end{equation*} \notag
and consider its partition into connected components:
\begin{equation*} \widetilde G=\bigsqcup_{i=1}^8 G_i, \end{equation*} \notag
where each set G_i is characterized by constant signs of the functions \sin\theta, R_1, and R_2, as indicated in Table 1.

Table 1.The definition of the domains G_i

G_iG_1G_2G_3G_4G_5G_6G_7G_8
\operatorname{sign} \sin\theta----++++
\operatorname{sign} R_1++----++
\operatorname{sign} R_2+--++--+

Also consider an open dense subset of the space of potentially optimal geodesics:

\begin{equation*} \widetilde N=\bigl\{(\lambda,t) \in N \mid t < t_{\rm Max}^1(\lambda), \ c_{t/2}\sin\gamma_{t/2} \ne 0\bigr\}, \end{equation*} \notag
and consider its connected components
\begin{equation*} \begin{gathered} \, D_1=\bigl\{ (\lambda, t) \in N \mid t < t_{\rm Max}^1(\lambda), \ c_{t/2} > 0, \ \gamma_{t/2}\in(-\pi, 0)\bigr\}, \\ D_2=\bigl\{ (\lambda, t) \in N \mid t < t_{\rm Max}^1(\lambda), \ c_{t/2} > 0, \ \gamma_{t/2}\in(0, \pi)\bigr\}, \\ D_3=\bigl\{ (\lambda, t) \in N \mid t < t_{\rm Max}^1(\lambda), \ c_{t/2} < 0, \ \gamma_{t/2}\in(0, \pi)\bigr\}, \\ D_4=\bigl\{ (\lambda, t) \in N \mid t < t_{\rm Max}^1(\lambda), \ c_{t/2} < 0, \ \gamma_{t/2}\in(-\pi, 0)\bigr\}, \\ D_5=\bigl\{ (\lambda, t) \in N \mid t < t_{\rm Max}^1(\lambda), \ c_{t/2} > 0, \ \gamma_{t/2}\in(\pi, 2\pi)\bigr\}, \\ D_6=\bigl\{ (\lambda, t) \in N \mid t < t_{\rm Max}^1(\lambda), \ c_{t/2} > 0, \ \gamma_{t/2}\in(2\pi, 3\pi)\bigr\}, \\ D_7=\bigl\{ (\lambda, t) \in N \mid t < t_{\rm Max}^1(\lambda), \ c_{t/2} < 0, \ \gamma_{t/2}\in(2\pi, 3\pi)\bigr\}, \end{gathered} \end{equation*} \notag
and
\begin{equation*} D_8=\bigl\{ (\lambda, t) \in N \mid t < t_{\rm Max}^1(\lambda), \ c_{t/2} < 0, \ \gamma_{t/2}\in(\pi, 2\pi)\bigr\}; \end{equation*} \notag
\widetilde N=\bigsqcup_{i=1}^8D_i.

Theorem 2.10. The following maps are diffeomorphisms:

\begin{equation*} \begin{aligned} \, \operatorname{Exp}\colon D_i &\to G_i, \qquad i=1,\dots,8; \\ \operatorname{Exp}\colon \widetilde N &\to \widetilde G. \end{aligned} \end{equation*} \notag

2.4.6. The cut time

Theorem 2.11. For each \lambda \in C

\begin{equation*} t_{\rm cut}(\lambda)=t_{\rm Max}^1(\lambda). \end{equation*} \notag

The cut time is invariant under the vertical component of the Hamiltonian field \vec H_v, so the sub-Riemannian structure on \operatorname{SE}(2) is equioptimal.

2.4.7. The cut locus and its stratification

Theorem 2.12. The cut locus is a stratified two-dimensional manifold with the stratification

\begin{equation*} \begin{gathered} \, \operatorname{Cut}=\operatorname{Cut}_{\rm glob} \sqcup \operatorname{Cut}_{\rm loc}^+ \sqcup \operatorname{Cut}_{\rm loc}^-, \\ {\begin{aligned} \, \operatorname{Cut}_{\rm glob}&=\{q \in M \mid \theta=\pi\}, \\ \operatorname{Cut}_{\rm loc}^+&=\{q \in M \mid \theta \in (- \pi, \pi), \ R_2=0, \ R_1 \geqslant R_1^1(|\theta|)\}, \\ \operatorname{Cut}_{\rm loc}^-&=\{q \in M \mid \theta\in (- \pi, \pi), \ R_2=0, \ R_1 \leqslant-R_1^1(|\theta|)\}, \end{aligned}} \end{gathered} \end{equation*} \notag
where
\begin{equation*} \begin{alignedat}{2} R_1&=R_1^1(\theta), &\qquad \theta &\in [0,\pi], \\ R_1^1(\theta)&=2(F(v_1^1(k),k)-E(v_1^1(k),k)), &\qquad k&=k_1^1(\theta), \\ v_1^1(k)&=\operatorname{am}(p_1^1(k),k), &\qquad k &\in [0,1), \end{alignedat} \end{equation*} \notag
and k=k_1^1(\theta) for \theta \in [0,\pi] is the inverse of the decreasing function
\begin{equation*} \theta(k)=2\arcsin(k\sin v_1^1(k)), \qquad k \in [0,1]. \end{equation*} \notag
The reference point g_0=\operatorname{Id} belongs to the closures of both \operatorname{Cut}_{\rm loc}^+ and \operatorname{Cut}_{\rm loc}^-, but is separated from \operatorname{Cut}_{\rm glob}.

We show the cut locus \operatorname{Cut} \subset \operatorname{SE}(2) in Fig. 6 (in the straightening coordinates R_1=y \cos(\theta/2)-x \sin(\theta/2), R_2=x \cos(\theta/2)+y \sin(\theta/2)) and Fig. 7 (as embedded in the solid torus modelling the group \operatorname{SE}(2)).

2.4.8. Spheres

The sub-Riemannian spheres S_R are homeomorphic (but not diffeomorphic) to

In Figures 8, 9, and 10 we show the sub-Riemannian spheres of radii \pi/2, \pi, and 3\pi/2, respectively, as embedded in the solid torus modelling the group \operatorname{SE}(2).

2.4.9. Metric straight lines

The metric straight lines through the identity element g_0=\operatorname{Id} are g(t)=\operatorname{Exp}(\lambda,t), t \in \mathbb{R}, where \lambda \in C_3\cup C_5. The geodesics \operatorname{Exp}(\lambda,t), \lambda \in C_3, are projected onto tractrices on the (x,y)-plane, while geodesics \operatorname{Exp}(\lambda,t), \lambda \in C_5, are projected onto the lines (x,y)=(\pm t,0).

2.4.10. The bicycle model

We can regard the sub-Riemannian problem on \operatorname{SE}(2) as the problem of the optimal motion of a bicycle model.

Assume that the front and rear wheels of a bicycle touch the ground at points \mathbf{f} and \mathbf{b}, and the distance between these points (wheelbase) is fixed and equal to \ell. In the process of motion of the bicycle the points \mathbf{f} and \mathbf{b} draw two curves, the front and rear paths. At each moment of time the line segment \mathbf{f}-\mathbf{b} is tangent to the rear path. We say that the motion is optimal if it minimizes the length of the front path. Then the problem of the optimal motion of a bicycle is just the sub-Riemannian problem (2.5)(2.8) on the group \operatorname{SE}(2).

We say that two curves in the plane have the same shape if one of them can be taken to the other by a composition of motions and dilations. The width of a plane curve is the greatest lower bound of the distances between two parallel straight lines bounding a strip which contains this curve.

Theorem 2.13. An optimal trajectory of the front wheel of the bicycle \mathbf{b}(t) is a straight line or an arc of a non-inflectional elastica of width at most 2\ell. A non- inflectional elastica of any shape can be obtained in this way.

2.4.11. The isometry group and homogeneous geodesics

Theorem 2.15. The isometry group of the sub-Riemannian structure on \operatorname{SE}(2) is

\begin{equation*} \operatorname{Isom}(\operatorname{SE}(2))=\operatorname{SE}(2) \rtimes (\mathbb{Z}_2 \times \mathbb{Z}_2), \end{equation*} \notag
where the first factor \operatorname{SE}(2) acts by left shifts on itself, the second factor \mathbb{Z}_2 acts on a pair (\mathbf{b},\mathbf{f}) as the reflection of the plane in one of the axes, and the third factor \mathbb{Z}_2 acts as the reflection (\mathbf{b},\mathbf{f}) \mapsto (\mathbf{b},2\mathbf{b}-\mathbf{f}).

A geodesic \gamma on a sub-Riemannian manifold M is said to be homogeneous if it is a homogeneous space of a one-parameter subgroup of \operatorname{Isom}(M), that is, if there exists a one-parameter subgroup \{\varphi_s \mid s \in \mathbb{R}\} \subset \operatorname{Isom}(M) such that

A sub-Riemannian manifold is said to be geodesically orbital if all geodesics on it are homogeneous.

Theorem 2.16. Homogeneous geodesics on \operatorname{SE}(2) have the form g(t)=\operatorname{Exp}(\lambda,t), \lambda \in C_4\cup C_5. They are one-parameter subgroups e^{t X_2} and e^{t X_1}; their projections onto the (x,y)-plane are the point (0,0) and the line y=0.

Thus, \operatorname{SE}(2) is not a geodesically orbital space.

2.4.12. Bibliographic comments

Subsections 2.4.12.4.3 are based on [116], §§ 2.4.42.4.6, 2.4.8, and 2.4.9 on [134], § 2.4.7 on [135], and §§ 2.4.10 and 2.4.11 on [12] and [140].

The sub-Riemannian problem on \operatorname{SE}(2) was also considered in [2], [12], [39], [111], and [142].

2.5. The sub-Riemannian problem on the motion group \operatorname{SH}(2) of the pseudo-Euclidean plane

2.5.1. The motion group \operatorname{SH}(2) of the pseudo- Euclidean plane

The pseudo- Euclidean plane is a two-dimensional real linear space endowed with the sign- indefinite bilinear form

\begin{equation*} (\mathbf{x},\mathbf{y})=x_1 y_1-x_2 y_2, \qquad \mathbf{x}=(x_1, x_2), \quad \mathbf{y}=(y_1, y_2). \end{equation*} \notag
The distance r between two points \mathbf{x}=(x_1,x_2) and \mathbf{y}=(y_1,y_2) is defined by
\begin{equation*} r^2=(\mathbf{x}-\mathbf{y},\mathbf{x}-\mathbf{y})= (x_1-y_1)^2-(x_2-y_2)^2,\qquad r=\begin{cases} |r| &\text{ for }\ r^2 \geqslant 0, \\ i |r| &\text{ for }\ r^2 < 0. \end{cases} \end{equation*} \notag
The locus of points \mathbf{x}=(x_1,x_2) lying at distance zero from the origin (x_1^2-x_2^2=0) is called the light cone. The complement of the pseudo-Euclidean plane to the light cone falls into four connected components, quadrants (\operatorname{sign}(x_1-x_2)=\pm 1, \operatorname{sign}(x_1+x_2 )=\pm 1).

The Lie group \operatorname{SH}(2) and the Lie algebra \mathfrak{sh}(2). A motion of the pseudo- Euclidean plane is a linear transformation that preserves the orientation, the quadrants, and the distances between points in the plane. The group of motions of the pseudo-Euclidean plane is denoted by \operatorname{SH}(2). It has the linear representation

\begin{equation*} \operatorname{SH}(2)=\left\{\begin{pmatrix} \cosh z & \sinh z & x \\ \sinh z & \cosh z & y \\ 0 & 0 & 1 \end{pmatrix}\ \bigg|\ x, y, z \in \mathbb{R}\right\}. \end{equation*} \notag
The action of a motion g=(x,y,z) on a point \mathbf{a}=(a_1,a_2) in the pseudo-Euclidean plane can be calculated using matrix multiplication:
\begin{equation*} \begin{pmatrix} \cosh z & \sinh z & x \\ \sinh z & \cosh z & y \\ 0 & 0 & 1 \end{pmatrix}\begin{pmatrix} a_1 \\ a_2 \\ 1 \end{pmatrix}=\begin{pmatrix} a_1 \cosh z+a_2 \sinh z+x \\ a_1 \sinh z+a_2 \cosh z+y \\ 1 \end{pmatrix}, \end{equation*} \notag
so that g \colon (a_1,a_2) \mapsto (a_1 \cosh z+a_2 \sinh z+x, a_1 \sinh z+a_2 \cosh z+y).

G=\operatorname{SH}(2) is a Lie group with Lie algebra

\begin{equation*} \mathfrak{g}=\mathfrak{sh}(2)= \operatorname{span}(E_{21}+E_{12},E_{13},E_{23}). \end{equation*} \notag
Basis left-invariant vector fields on \operatorname{SH}(2) are
\begin{equation*} \begin{gathered} \, X_1=L_{g*} E_{13}=\cosh z\,\frac{\partial}{\partial x}+ \sinh z\,\frac{\partial}{\partial y}\,, \\ X_2=L_{g*} (E_{21}+E_{12})=\frac{\partial}{\partial z}\,, \end{gathered} \end{equation*} \notag
and
\begin{equation*} X_3=L_{g*} E_{23}=\sinh z\,\frac{\partial}{\partial x}+ \cosh z\,\frac{\partial}{\partial y} \end{equation*} \notag
with the multiplication table
\begin{equation} [X_1, X_2]=- X_3, \quad [X_2. X_3]=X_1, \quad [X_1, X_3]=0. \end{equation} \tag{2.15}

2.5.2. The sub-Riemannian problem on \operatorname{SH}(2)

Consider the sub-Riemannian problem on the group \operatorname{SH}(2) with orthonormal frame (X_1, X_2):

\begin{equation} \dot g=u_1 X_1+u_2 X_2, \quad g \in G=\operatorname{SH}(2), \quad u=(u_1, u_2) \in \mathbb{R}^2, \end{equation} \tag{2.16}
\begin{equation} g(0)=g_0=\operatorname{Id}, \quad g(t_1)=g_1, \end{equation} \tag{2.17}
\begin{equation} l=\int_0^{t_1} \sqrt{u_1^2 +u_2^2}\,dt \to \min. \end{equation} \tag{2.18}

By the Agrachev–Barilari classification [1] this is the unique, up to local isometries, non-integrable sub-Riemannian problem of rank 2 on \operatorname{SH}(2); the corresponding invariants are \chi=-\kappa=1.

2.5.3. Geodesics

That optimal controls exist in problem (2.16)(2.18) follows from the Rashevskii–Chow and Filippov theorems.

The Pontryagin maximum principle. Abnormal trajectories are constant in time.

Normal extremals are the projections of trajectories of the Hamiltonian system \dot\lambda=\vec{H}(\lambda), \lambda \in T^*G, where H=(h_1^2+h_2^2)/2, h_i(\lambda)=\langle \lambda,X_i\rangle, i=1,2,3. In coordinates this system looks as follows:

\begin{equation} \dot{h}_{1} =h_{2}h_{0}, \end{equation} \tag{2.19}
\begin{equation} \dot{h}_{2} =-h_{1}h_{0}, \end{equation} \tag{2.20}
\begin{equation} \dot{h}_{0} = h_{1}h_{2}, \end{equation} \tag{2.21}
\begin{equation} \dot{x} =h_{1}\cosh z, \nonumber \end{equation} \notag
\begin{equation} \dot{y} =h_{1}\operatorname{sinh} z, \nonumber \end{equation} \notag
\begin{equation} \dot{z} =h_{2}. \nonumber \end{equation} \notag
On the level surface \{H=1/2\}, in the coordinates (\gamma,c), where
\begin{equation*} h_1=\cos \frac{\gamma}{2}\,, \quad h_2=\sin \frac{\gamma}{2}\,, \quad c=-2 h_3, \end{equation*} \notag
the vertical subsystem (2.19)(2.21) assumes the form of a two-sheeted cover of the pendulum system:
\begin{equation} \dot\gamma=c, \quad \dot c=-\sin \gamma, \qquad (\gamma,c) \in \mathfrak{g}^* \cap \biggl\{H=\frac{1}{2}\biggr\} \simeq (2 S^1_{\gamma}) \times \mathbb{R}_c. \end{equation} \tag{2.22}
A first integral of this equation is the energy of the pendulum
\begin{equation*} E=\frac{c^2}{2}-\cos \gamma=2 h_3^2-h_1^2+h_2^2 \in [-1,+\infty). \end{equation*} \notag

The symplectic foliation. The Lie coalgebra \mathfrak{g}^* possesses a Casimir function F=h_1^2-h_3^2. The symplectic foliation consists of

The energy of the pendulum is a linear combination of the Casimir function and the Hamiltonian: E=2 H-2 F.

The stratification of the cylinder C and straightening coordinates. Since the vertical subsystem of the Hamiltonian system for the problem on \operatorname{SH}(2), the pendulum system (2.22), coincides with a similar system (2.12) for the problem on \operatorname{SE}(2), the stratification of C and straightening coordinates (\varphi,k) for the problem on \operatorname{SH}(2) also coincide with the ones for the problem on \operatorname{SE}(2) (see § 2.4.2).

A parametrization of geodesics. If \lambda=(\varphi,k) \in C_1, then \varphi_t=\varphi+t and

\begin{equation*} \begin{pmatrix} x\\ y\\ z \end{pmatrix}={\begin{pmatrix} \dfrac{s_{1}}{2}\biggl[\biggl(w+\dfrac{1}{w(1-k^{2})}\biggr) [\operatorname{E}(\varphi)-\operatorname{E}(\varphi_{0})]+ \biggl(\dfrac{k}{w(1-k^{2})}-kw\biggr)[\operatorname{sn}\varphi- \operatorname{sn}\varphi_{0}]\biggr] \\ \dfrac{1}{2}\biggl[\biggl(w-\dfrac{1}{w(1-k^{2})}\biggr) [\operatorname{E}(\varphi)-\operatorname{E}(\varphi_{0})]- \biggl(\dfrac{k}{w(1-k^{2})}+kw\biggr)[\operatorname{sn}\varphi- \operatorname{sn}\varphi_{0}]\biggr] \\ s_{1}\log[(\operatorname{dn}\varphi-k\operatorname{cn}\varphi)w] \end{pmatrix}}, \end{equation*} \notag
where w=1/(\operatorname{dn}\varphi_{0}-k\operatorname{cn}\varphi_{0}).

If \lambda=(\varphi,k) \in C_2, then \psi=\varphi/k, \psi_t=\varphi_t/k=\psi+t/k and

\begin{equation*} \begin{aligned} \, x&=\frac{1}{2}\biggl(\frac{1}{w(1-k^{2})}-w\biggr)[\operatorname{E}(\psi)- \operatorname{E}(\psi_{0})-k^{\prime2}(\psi-\psi_{0})] \\ &\qquad+\frac{1}{2}(kw+\frac{k}{w(1-k^{2})}) [\operatorname{sn}\psi-\operatorname{sn}\psi_{0}], \\ y&=-\frac{s_{2}}{2}\biggl(\frac{1}{w(1-k^{2})}+w\biggr) [\operatorname{E}(\psi)-\operatorname{E}(\psi_0)-k^{\prime2}(\psi-\psi_{0})] \\ &\qquad+\frac{s_{2}}{2}\biggl(kw-\frac{k}{w(1-k^{2})}\biggr) [\operatorname{sn}\psi-\operatorname{sn}\psi_{0}], \\ z&=s_{2}\log[(\operatorname{dn}\psi-k\operatorname{cn}\psi)w], \end{aligned} \end{equation*} \notag
where w=1/(\operatorname{dn}\psi_{0}-k\operatorname{cn}\psi_{0}).

If \lambda=(\varphi,k) \in C_3, k=1, then {\varphi_t}=\varphi+t and

\begin{equation*} \begin{pmatrix} x\\ y\\ z \end{pmatrix}=\begin{pmatrix} \dfrac{s_{1}}{2}\biggl[\dfrac{1}{w}(\varphi-\varphi_{0})+ w(\tanh \varphi-\tanh \varphi_{0})\biggr] \\ \dfrac{s_{2}}{2}\biggl[\dfrac{1}{w}(\varphi-\varphi_{0})- w(\tanh \varphi-\tanh \varphi_{0})\biggr] \\ -s_{1}s_{2}\log(w\operatorname{sech}\varphi) \end{pmatrix}, \end{equation*} \notag
where w=\cos h \varphi_{0}.

If \lambda=(\gamma,c) \in C_4, then

\begin{equation*} \begin{pmatrix} x\\ y\\ z \end{pmatrix}=\begin{pmatrix} \operatorname{sign}\biggl(\cos\dfrac{\gamma}{2}\biggr)t \\ 0 \\ 0 \end{pmatrix}. \end{equation*} \notag

If \lambda=(\gamma,c) \in C_5, then

\begin{equation*} \begin{pmatrix} x\\ y\\ z \end{pmatrix}=\begin{pmatrix} 0\\ 0\\ \operatorname{sign}\biggl(\sin\dfrac{\gamma}{2}\biggr)t \end{pmatrix}. \end{equation*} \notag

The projection of the geodesic onto the (x,y)-plane has curvature \tan(\gamma/2)/\cosh^{3/2}(2z). It has inflection points for \sin(\gamma/2)=0 (provided that \lambda \in C_1 \cup C_2 \cup C_3) and cusp points for \cos(\gamma/2)=0 (provided that \lambda \in C_2).

2.5.4. Symmetries and Maxwell strata

The phase portrait of the pendulum system (2.22) has the symmetry group \operatorname{Sym}=\{\operatorname{Id},\varepsilon^1,\dots,\varepsilon^7\}, described in § 2.4.3. The extension of this group to the source space of the exponential map N=C \times \mathbb{R}_+ was also described there. The extension of this symmetry group to the target space of the exponential map has the form

\begin{equation*} \varepsilon^i \colon g=(x,y,z) \mapsto g^i=\varepsilon^i(g)=(x^i,y^i,z^i), \end{equation*} \notag
where
\begin{equation} \begin{aligned} \, (x^{1},y^{1},z^{1})&=(x\cosh z-y\operatorname{sinh} z, x\operatorname{sinh} z-y\cosh z,z), \\ (x^{2},y^{2},z^{2})&=(x\cosh z-y\operatorname{sinh} z, -x\operatorname{sinh} z+y\cosh z,-z), \\ (x^{3},y^{3},z^{3})&=(x,-y,-z), \\ (x^{4},y^{4},z^{4})&=(-x,y,-z), \\ (x^{5},y^{5},z^{5})&=(-x\cosh z+y\operatorname{sinh} z, x\operatorname{sinh} z-y\cosh z,-z), \\ (x^{6},y^{6},z^{6})&=(-x\cosh z+y\operatorname{sinh} z, -x\operatorname{sinh} z+y\cosh z,z), \\ (x^{7},y^{7},z^{7})&=(-x,-y,z). \end{aligned} \end{equation} \tag{2.23}

The following analogue of Proposition 2.3 holds.

Theorem 2.17. The first Maxwell time corresponding to the symmetry group \operatorname{Sym} has the following expression for almost all geodesics:

\begin{equation*} \begin{aligned} \, \lambda\in C_{1} & \ \ \Longrightarrow\ \ t_{\rm Max}^1(\lambda)=4K(k), \\ \lambda\in C_{2} & \ \ \Longrightarrow\ \ t_{\rm Max}^1(\lambda)=4kK(k), \\ \lambda\in C_{3}\cup C_{4}\cup C_{5} & \ \ \Longrightarrow \ \ t_{\rm Max}^1(\lambda)=+\infty. \end{aligned} \end{equation*} \notag

We also have the following result.

Corollary 2.1. For each \lambda \in C the first Maxwell time t_{\rm Max}^1 is equal to the period of oscillations of the pendulum (2.22).

An analogue of Theorem 2.8 holds.

2.5.5. Estimates for the cut time

Let p_1^1(k)\! \in\! (2K,3K) denote the first positive root of the equation \operatorname{cn}p\operatorname{E}(p)- \operatorname{sn}p\operatorname{dn}p=0.

Theorem 2.18. If \lambda \in C_1, then 4K(k) \leqslant t_{\rm conj}^1(\lambda) \leqslant 2 p_1^1(k). Moreover,

\begin{equation*} \lim_{k \to+0} t_{\rm conj}^1(\lambda)=2 \pi\quad\textit{and}\quad \lim_{k \to 1-0} t_{\rm conj}^1(\lambda)=+\infty. \end{equation*} \notag

Theorem 2.19. If \lambda \in C_2, then 4k K(k) \leqslant t_{\rm conj}^1(\lambda) \leqslant 2 k p_1^1(k). Moreover,

\begin{equation*} \lim_{k \to+0} t_{\rm conj}^1(\lambda)=0\quad\textit{and}\quad \lim_{k \to 1-0} t_{\rm conj}^1(\lambda)=+\infty. \end{equation*} \notag

Theorem 2.20. If \lambda \in C_4, then t_{\rm conj}^1(\lambda)=2\pi.

If \lambda \in C_3 \cup C_5, then t_{\rm conj}^1(\lambda)=+\infty.

2.5.6. The cut time

Theorem 2.22. For each \lambda \in C

\begin{equation*} t_{\rm cut}(\lambda)=\min\bigl(t_{\rm Max}^1(\lambda),t_{\rm conj}^1(\lambda)\bigr)= \begin{cases} 4K(k), & \lambda \in C_1, \\ 4k K(k), & \lambda \in C_2, \\ 2\pi, & \lambda \in C_4, \\ +\infty, & \lambda \in C_3 \cup C_5. \end{cases} \end{equation*} \notag

Theorem 2.23. (1) The function t_{\rm cut}\colon C\to (0,+\infty] depends only on the energy E of the pendulum (2.22).

(2) The function t_{\rm cut} is invariant under the vertical component of the Hamiltonian field \vec{H}_v and the symmetries \varepsilon^i \in \operatorname{Sym}.

(3) The function t_{\rm cut} is continuous on C and smooth on C_1 \cup C_2.

(4) \lim_{E \to-1}t_{\rm cut}=2 \pi, \lim_{E \to 1}t_{\rm cut}=+ \infty, and \lim_{E \to+\infty} t_{\rm cut}=0.

2.5.7. The diffeomorphism structure of the exponential map

Consider an open dense subset of G that contains no first Maxwell points:

\begin{equation*} \widetilde{G}=\{g \in G \mid z \ne 0\}, \end{equation*} \notag
and consider its partition into connected components:
\begin{equation*} \widetilde{G}=G_1 \sqcup G_2, \quad\text{where } G_1=\{g \in G \mid z > 0\}\quad\text{and} \quad G_2=\{g \in G \mid z < 0\}. \end{equation*} \notag
Also consider an open dense subset of the space of potentially optimal geodesics:
\begin{equation*} \widetilde N=\biggl\{(\lambda,t) \in \bigcup_{i=1}^3 N_1 \cup N_5 \Bigm| t < t_{\rm cut}(\lambda), \ \sin\frac{\gamma_{t/2}}{2} \ne 0 \biggr\} \end{equation*} \notag
and its partition into connected components:
\begin{equation*} \widetilde N=D_1 \sqcup D_2, \end{equation*} \notag
where
\begin{equation*} D_1=\biggl\{(\lambda,t) \in \widetilde N \Bigm|\sin\frac{\gamma_{t/2}}{2} > 0 \biggr\} \end{equation*} \notag
and
\begin{equation*} D_2=\biggl\{(\lambda,t) \in \widetilde N \Bigm|\sin\frac{\gamma_{t/2}}{2} < 0\biggr\}. \end{equation*} \notag

Theorem 2.24. The maps

\begin{equation*} \operatorname{Exp}\colon D_i \to G_i, \qquad i=1, 2, \end{equation*} \notag
and
\begin{equation*} \operatorname{Exp}\colon \widetilde N \to \widetilde{G} \end{equation*} \notag
are diffeomorphisms.

2.5.8. The cut locus

Theorem 2.25. The cut locus \operatorname{Cut} lies in the plane \{z=0\}. It has a partition into connected components

\begin{equation*} \operatorname{Cut}=\operatorname{Cut}_{\rm loc}^+ \sqcup \operatorname{Cut}_{\rm loc}^- \sqcup \operatorname{Cut}_{\rm glob}^+ \sqcup \operatorname{Cut}_{\rm glob}^-, \end{equation*} \notag
where The closures of the connected components \operatorname{Cut}_{\rm loc}^{\pm} contain the origin \operatorname{Id}, whereas the closure of \operatorname{Cut}_{\rm glob}^{\pm} does not.

We show the cut locus in Fig. 11. In Fig. 12 we show the cut locus and the first caustic \operatorname{Conj}^1.

2.5.9. Spheres

The sub-Riemannian spheres S_R, R > 0, are homeomorphic to the Euclidean 2-sphere (see the sphere S_{\pi} in Fig. 13 and the sphere S_{2 \pi} in Fig. 14).

These spheres have singularities at the points of their intersection with the cut locus (see the intersection of \operatorname{Cut} and S_{\pi} \cap \{z < 0\} in Fig. 15 and the intersection of \operatorname{Cut} and S_{2\pi} \cap \{z < 0\} in Fig. 16).

2.5.10. The structure of optimal synthesis

Theorem 2.26. (1) For each point g_1 \in \operatorname{Cut} \setminus \operatorname{Conj}^1=\operatorname{int}_{\{z=0\}} \operatorname{Cut} there exist precisely two length minimizers connecting \operatorname{Id} with g_1. For these curves g_1 is a cut point and a Maxwell point, but not a conjugate point.

(2) For each point g_1 \in \operatorname{Cut} \mathop{\cap} \operatorname{Conj}^1= (\partial_{\{z=0\}} \operatorname{Cut}) \setminus \{\operatorname{Id}\} there exists a unique length minimizer connecting \operatorname{Id} with g_1. For it g_1 is a cut point and a conjugate point, but not a Maxwell point.

(3) For each point g_1 \in G \setminus(\operatorname{Cut} \cup \operatorname{Id}) there exists a unique length minimizer connecting \operatorname{Id} with g_1. For it g_1 is neither a cut point, nor a conjugate or a Maxwell point.

2.5.11. Metric lines

The metric lines through the identity element \operatorname{Id} are

\begin{equation*} g(t)=\operatorname{Exp}(\lambda,t), \qquad t \in \mathbb{R}, \quad \lambda \in C_3 \cup C_5. \end{equation*} \notag

2.5.12. Bibliographic comments

Subsection 2.5.1 is based on [159], §§ 2.5.2 and 2.5.3, on [58], §§ 2.5.4 and 2.5.5 on [59], and §§ 2.5.62.5.11 on [60].

2.6. Euler’s elastic problem

2.6.1. The history of the problem

In 1691 J. Bernoulli considered the problem of the shape of an elastic planar rod compressed by an external force. He deduced equations for an elastic rod which is fixed vertically to a horizontal wall and is flexed by a force applied horizontally to its upper end (a rectangular elastic):

\begin{equation*} dy=\frac{x^2\,d x}{\sqrt{1-x^4}}\,, \quad ds=\frac{d x}{\sqrt{1-x^4}}\,, \qquad x \in [0,1), \end{equation*} \notag
where (x,y) is the elastic rod and s is the length parameter (the rod is deflected to a distance of 1 in the horizontal direction). Bernoulli integrated these equations by series and obtained two-sided estimates for their solution at the finite point x=1 [44].

In 1742 D. Bernoulli, in his letter [43] to Euler, wrote that the elastic energy of the rod is proportional to J=\displaystyle\int\dfrac{ds}{R^2} , where R is the curvature radius of the rod. He proposed to find the shape of elastica on the basis of the variational principle J \to \min. At that time Euler was writing his treatise [70] on variational calculus (which was published in 1744). He added a supplement De curvis elasticis to that book, where he applied the methods just developed to the problem of elastic rods. Euler considered a thin homogeneous elastic plate which has the form of a rectangle in its natural (stressless) state. He stated the following problem for the profile of the plate:

… among all curves of the same length which not only pass through the points A and B, but also are tangent to given straight lines at these points, that curve be determined in which the value of \displaystyle\int_A^B\dfrac{ds}{R^2} is a minimum.”

Euler wrote down an equation for the corresponding variational problem, which is now known as the Euler–Lagrange equation, and reduced it to the equations

\begin{equation*} dy=\frac{(\alpha+\beta x+\gamma x^2)\, dx} {\sqrt{a^4 -(\alpha+\beta x+\gamma x^2)^2}}\,,\qquad ds=\frac{a^2\,dx}{\sqrt{a^4-(\alpha+\beta x+\gamma x^2)^2}}\,, \end{equation*} \notag
with parameters expressed in terms of the elastic characteristics and length of the rod and the load value. Using the modern language, Euler examined the qualitative behaviour of the elliptic functions parametrizing the elastic curves by means of a qualitative analysis of the equations defining these curves. Subsequently, curves describing the shape of a homogeneous planar rod were called Euler elasticae. Euler describes all types of elasticae and indicated the values of the parameters for which these types appear. He divided the elasticae into nine classes (see Figs. 1925 below): Elasticae of types (ii)–(vi), which have inflection points, are called inflectional elasticae, ones of type (vii) are critical, and elasticae of type (viii), which have no inflection points, are non-inflectional elasticae. We show the family of all elasticae in Fig. 17.

The first explicit parametrization of Euler’s elasticae was due to Saalschütz [122] (1880).

In 1906, the future Nobel prize winner Born defended his thesis Stability of elastic curves in the plane and space [51]. He treated the problem of elasticae by methods of variational calculus and deduced from the Euler–Lagrange equations the equations

\begin{equation*} \begin{gathered} \, \dot x=\cos \theta, \quad \dot y=\sin \theta, \\ A \ddot \theta+R \sin (\theta-\gamma)=0,\quad A,R,\gamma=\operatorname{const}, \end{gathered} \end{equation*} \notag
so that the slope angle \theta of an elastica satisfies the equation of a mathematical pendulum. Then Born considered the question of the stability of elasticae with fixed endpoints and prescribed tangents at these endpoints. He proved that an arc without inflection points of an elastica is stable (on it the angle \theta changes monotonically and can be taken as a parameter on the curve; Born showed that the second variation of the elastic energy functional J=\dfrac{1}{2}\displaystyle\int \dot\theta^2\,dt is positive). In the general case Born presented a Jacobian vanishing at conjugate points. Since it involves quite complicated functions, Born limited himself to a numerical examination of conjugate points. He was the first to plot elasticae and verify theoretical results by experiments with elastic rods. In addition, he analyzed the stability of elasticae for various other types of boundary conditions, and obtained some results for elastic three-dimensional curves.

In 1993 Euler elasticae were discovered by Jurdjevic [86] in the problem of ball rolling over a plane without twisting or slipping (see § 2.8) and by Brockett and Dai [56] in the sub-Riemannian problem on the Cartan group (see § 2.10). Euler elasticae also appear miraculously in the Martinet flat sub-Riemannian problem (see § 2.3) and in sub-Riemannian problems on \operatorname{SE}(2) (see § 2.4) and the Engel group (see § 2.9). In could be interesting to understand why Euler elasticae appear in so many optimal control problems.

Subsequently, Euler’s problem of elasticae was considered in [18], [111], [129]–[131], [133], [136], and [137], and our presentation in this section is based on these papers.

2.6.2. The problem statement

The mechanical setting. Assume that a uniform elastic rod on the plane \mathbb{R}^2 has length l > 0. Fix any points a_0, a_1 \in \mathbb{R}^2 and some unit tangent vectors v_i \in T_{a_i} \mathbb{R}^2, |v_i|=1, i=0,1. The problem consists in finding the profile of the rod \gamma\colon[0,l]\to\mathbb{R}^2, |\dot \gamma(s)| \equiv 1, going out of a_0 and coming into a_1 with tangent vectors v_0 and v_1, respectively:

\begin{equation*} \begin{alignedat}{2} \gamma(0)&=a_0, &\qquad \gamma(l)&=a_1, \\ \dot\gamma(0)&=v_0, &\qquad \dot\gamma(l)&=v_1, \end{alignedat} \end{equation*} \notag
and with the minimum elastic energy
\begin{equation*} J=\frac{1}{2} \int_0^l k^2(s)\,ds \to \min, \end{equation*} \notag
where k(s) is the curvature of the curve \gamma(s).

The optimal control problem. We introduce Cartesian coordinates (x,y) in \mathbb{R}^2. We denote the length parameter s on a curve \gamma by t; let t_1=l. The curve to be determined has a parametrization \gamma(t)=(x(t),y(t)), t \in [0,t_1], and its endpoints have coordinates a_i=(x_i,y_i), i=0,1. Let \theta(t) denote the angle between the tangent vector \dot\gamma(t) and the positive direction of the x-axis. Finally, assume that the tangent vectors at the endpoints of \gamma have coordinates v_i=(\cos\theta_i,\sin\theta_i), i=0,1 (see Fig. 18).

Then the required curve \gamma(t)=(x(t),y(t)) is the projection of a trajectory of the control system

\begin{equation} \dot x =\cos \theta, \end{equation} \tag{2.24}
\begin{equation} \dot y =\sin \theta, \end{equation} \tag{2.25}
\begin{equation} \dot \theta =u, \end{equation} \tag{2.26}
\begin{equation} g =(x,y,\theta) \in M=\mathbb{R}^2_{x,y} \times S^1_{\theta},\quad u \in \mathbb{R}, \end{equation} \tag{2.27}
\begin{equation} g(0) =g_0=(x_0,y_0,\theta_0), \quad g(t_1)=g_1=(x_1,y_1,\theta_1), \quad t_1 \text{ is fixed}. \end{equation} \tag{2.28}
For a curve \gamma with natural parametrization the curvature is equal to the angular velocity: k=\dot \theta=u, so we obtain the quality functional
\begin{equation} J=\frac{1}{2} \int_0^{t_1} u^2(t) \, dt\to \min\!. \end{equation} \tag{2.29}
A natural class of admissible controls in problem (2.24)(2.29) is u(\,\cdot\,) \in L^2[0, t_1], so an admissible trajectory satisfies g(\,\cdot\,) \in W^{1,2}([0,t_1], M).

In the vector notation the problems assumes the following form:

\begin{equation} \begin{gathered} \, \dot g=X_1(g)+u X_2(g),\quad g \in M=\mathbb{R}^2 \times S^1,\quad u \in \mathbb{R}, \\ \nonumber g(0)=g_0, \quad g(t_1)=g_1, \quad t_1 \text{ is fixed}, \\ \nonumber J=\frac{1}{2} \int_0^{t_1} u^2\,dt \to \min, \quad u \in L^2[0,t_1], \end{gathered} \end{equation} \tag{2.30}
where the vector fields on the right in (2.30) are
\begin{equation*} X_1=\cos \theta\,\frac{\partial}{\partial x}+ \sin \theta\,\frac{\partial}{\partial y} \quad\text{and}\quad X_2=\frac{\partial}{\partial \theta}\,. \end{equation*} \notag
The state space M=\mathbb{R}^2 \times S^1 has the natural structure of the planar motion group G=\mathbb{R}^2 \rtimes \operatorname{SO}(2) (see § 2.4). Then X_1 and X_2 become left-invariant vector fields on the Lie group G. We presented the multiplication table for the Lie algebra \mathfrak{g}=\mathfrak{se}(2) in (2.10).

Thus, Euler’s elastic problem (2.24)(2.29) is a left-invariant optimal control problem on the group \operatorname{SE}(2). Hence we can assume that g_0=\operatorname{Id}=(0,0,0).

2.6.3. The attainability set

Theorem 2.27. The attainability set of system (2.30) from the point \operatorname{Id}=(0,0,0) in time t_1 > 0 is

\begin{equation*} \mathcal{A}(t_1)=\{(x,y,\theta) \in G \mid x^2+y^2 < t_1^2 \textit{ or } (x,y,\theta)=(t_1,0,0)\}. \end{equation*} \notag

Topologically, \mathcal{A}(t_1) is an open solid torus (the interior of a torus) with one boundary point. Below we consider the problem of elasticae under the natural controllability condition g_1 \in \mathcal{A}(t_1).

2.6.4. Existence and boundedness of optimal controls

Theorem 2.28. Let g_1 \in \mathcal{A}(t_1). Then an optimal control u \in L^2[0, t_1] exists; furthermore, u \in L^{\infty}[0, t_1]. Hence the optimal control satisfies the Pontryagin maximum principle.

2.6.5. Extremals

Abnormal trajectories. The abnormal trajectory through the point \operatorname{Id} with natural parametrization is (x,y,\theta)\!=\!(t,0,0), t \in [0,t_1]. Its projection onto the (x,y)-plane is a line segment, an elastic rod in the absence of external effects. In this case the elastic energy attains its absolute minimum J=0, so the abnormal trajectory if optimal. This is the trajectory coming into the unique point (t_1,0,0) on the boundary of the attainability set \mathcal{A}(t_1). The abnormal trajectory is incidentally normal.

Normal extremals. Normal extremals satisfy the Hamiltonian system

\begin{equation*} \dot \lambda=\vec{H}(\lambda),\qquad \lambda \in T^*G, \end{equation*} \notag
where H=h_1+h_2^2/2 and h_i(\lambda)=\langle \lambda,X_i\rangle, i=1,2,3. In the coordinate form this system looks like
\begin{equation} \dot h_1=- h_2h_3, \quad \dot h_2=h_3, \quad \dot h_3=h_1h_2, \end{equation} \tag{2.31}
\begin{equation} \dot g=X_1+h_2 X_2. \end{equation} \tag{2.32}
The vertical subsystem (2.31) has a first integral, the Casimir function F=h_1^2+h_3^2.

Consider the coordinates

\begin{equation*} c=h_2, \quad h_1=- r \cos \gamma, \quad h_2=- r \sin \gamma, \end{equation*} \notag
in which (2.31) takes the form of a mathematical pendulum:
\begin{equation} \dot \gamma=c, \quad \dot c=-r \sin \gamma, \qquad c \in \mathbb{R}, \quad \gamma \in S^1, \quad r \equiv \operatorname{const} \geqslant 0, \end{equation} \tag{2.33}
which is known as Kirchhoff’s kinetic analogue for elasticae. The full energy of the pendulum is
\begin{equation*} E=H=\frac{c^2}{2}-r \cos \gamma \in [-r,+\infty). \end{equation*} \notag

Stratification of the source space of the exponential map and straightening coordinates. The exponential map for time t_1 > 0 in the problem of elasticae is

\begin{equation*} \operatorname{Exp}_{t_1}\colon N=\mathfrak{g}^*\to G, \qquad \lambda \mapsto \pi \circ e^{t_1 \vec{H}}(\lambda), \end{equation*} \notag
where \pi\colon T^*G \to G is the canonical projection.

The source space of the exponential map N=\mathfrak{g}^* is partitioned into invariant manifolds of the Hamiltonian field \vec{H} by critical levels of energy E=H:

\begin{equation*} N=\bigsqcup_{i=1}^7 N_i, \end{equation*} \notag
where
\begin{equation*} \begin{gathered} \, N_1=\{\lambda \in N \mid r \ne 0, \ E \in (-r, r)\}, \\ N_2=\{\lambda \in N \mid r \ne 0, \ E \in (r,+\infty)\}, \\ N_3=\{\lambda \in N \mid r \ne 0, \ E=r, \ \gamma \ne \pi\}, \\ N_4=\{\lambda \in N \mid r \ne 0, \ E =-r \}, \\ N_5=\{\lambda \in N \mid r \ne 0, \ E =r, \ \gamma=\pi\}, \\ N_6=\{\lambda \in N \mid r=0, \ c \ne 0 \}, \end{gathered} \end{equation*} \notag
and
\begin{equation*} N_7=\{\lambda \in N \mid r=c=0\}. \end{equation*} \notag
On N_1, N_2, and N_3 we introduce a coordinate system (\varphi,k,r) as follows:
\begin{equation*} \begin{aligned} \, \lambda&=(\gamma,c,r) \in N_1 \quad\Longrightarrow\quad \begin{cases} \sin \dfrac{\gamma}{2}=k \operatorname{sn}(\sqrt{r}\,\varphi,k), \\ \dfrac{c}{2}=k \sqrt{r}\,\operatorname{cn}(\sqrt{r}\,\varphi,k), \\ \cos \dfrac{\gamma}{2}=\operatorname{dn}(\sqrt{r}\,\varphi,k), \end{cases} \\ &\qquad k=\sqrt{\dfrac{E+r}{2r}} \in (0,1), \quad \sqrt{r}\,\varphi\ \operatorname{mod}{4K(k)} \in [0,4K(k)]; \\ \lambda&=(\gamma,c,r) \in N_2 \quad\Longrightarrow\quad \begin{cases} \sin \dfrac{\gamma}{2}=\pm \operatorname{sn} \biggl(\dfrac{\sqrt{r}\,\varphi}{k}\,,k\biggr), \\ \dfrac{c}{2}=\pm \dfrac{\sqrt{r}}{k} \operatorname{dn}\biggl(\dfrac{\sqrt{r}\,\varphi}{k}\,,k\biggr), \\ \cos \dfrac{\gamma}{2}=\operatorname{cn} \biggl(\dfrac{\sqrt{r}\,\varphi}{k}\,,k\biggr), \end{cases} \\ &\qquad k=\sqrt{\frac{2 r}{E+r}} \in (0,1), \quad \sqrt{r}\, \varphi\ \operatorname{mod}{2K(k)k} \in [0,2K(k)k], \quad \pm=\operatorname{sign} c; \\ \lambda&=(\gamma,c,r) \in N_3 \quad\Longrightarrow\quad \begin{cases} \sin \dfrac{\gamma}{2}=\pm \tanh (\sqrt{r}\,\varphi), \\ \dfrac{c}{2}=\pm \dfrac{\sqrt{r}}{\cosh (\sqrt{r}\,\varphi)}\,, \\ \cos \dfrac{\gamma}{2}=\dfrac{1}{\cosh (\sqrt{r}\,\varphi)}\,, \end{cases} \\ &\qquad k=1, \quad \varphi \in \mathbb{R}, \quad \pm=\operatorname{sign} c. \end{aligned} \end{equation*} \notag

A parametrization of extremals. In the domain N_1 \cap N_2 \cup N_3 the pendulum equation ‘straightens out’:

\begin{equation*} \dot \varphi=1, \quad \dot k=\dot r=0, \end{equation*} \notag
so it has the solutions
\begin{equation*} \varphi_t=\varphi+t, \quad k,r \equiv \operatorname{const}. \end{equation*} \notag
In the original coordinates (\gamma,c) the pendulum equation (2.33) has the following solutions:
\begin{equation*} \begin{aligned} \, \lambda \in N_1 &\quad\Longrightarrow\quad \begin{cases} \sin \dfrac{\gamma_t}{2}=k_1 \operatorname{sn}(\sqrt{r}\,\varphi_t), \\ \cos \dfrac{\gamma_t}{2}=\operatorname{dn}(\sqrt{r}\,\varphi_t), \\ \dfrac{c_t}{2}=k \sqrt{r}\,\operatorname{cn}(\sqrt{r}\,\varphi_t); \end{cases} \\ \lambda \in N_2 &\quad\Longrightarrow\quad \begin{cases} \sin \dfrac{\gamma_t}{2}=\pm \operatorname{sn} \biggl(\dfrac{\sqrt{r}\,\varphi_t}{k}\biggr), \\ \cos \dfrac{\gamma_t}{2}=\operatorname{cn} \biggl(\dfrac{\sqrt{r}\,\varphi_t}{k}\biggr), \\ \dfrac{c_t}{2}=\pm \dfrac{\sqrt{r}}{k} \operatorname{dn} \biggl(\dfrac{\sqrt{r}\,\varphi_t}{k}\biggr), \end{cases} \qquad \pm=\operatorname{sign}c; \\ \lambda \in N_3 &\quad\Longrightarrow\quad \begin{cases} \sin\dfrac{\gamma_t}{2}=\pm\tanh (\sqrt{r}\,\varphi_t), \\ \cos \dfrac{\gamma_t}{2}=\dfrac{1}{\cosh (\sqrt{r}\,\varphi_t)}\,, \\ \dfrac{c_t}{2}=\pm\dfrac{\sqrt{r}}{\cosh (\sqrt{r}\,\varphi_t)}, \end{cases} \qquad \pm=\operatorname{sign}c. \end{aligned} \end{equation*} \notag
In the degenerate cases corresponding to \bigcup_{i=4}^7 N_i the pendulum equation (2.33) can be integrated by elementary functions:
\begin{equation*} \begin{alignedat}{2} \lambda \in N_4 &\quad\Longrightarrow\quad \gamma_t \equiv 0, &\qquad c_t &\equiv 0; \\ \lambda \in N_5 &\quad\Longrightarrow\quad \gamma_t \equiv \pi, &\qquad c_t &\equiv 0; \\ \lambda \in N_6 & \quad\Longrightarrow\quad \gamma_t=c t+\gamma, &\qquad c_t &\equiv c; \\ \lambda \in N_7 &\quad\Longrightarrow\quad c_t \equiv 0, &\qquad r &\equiv 0. \end{alignedat} \end{equation*} \notag

Solutions of the horizontal subsystem (2.32) have the following parametrization.

If \lambda \in N_1, then

\begin{equation*} \begin{aligned} \, \sin \frac{\theta_t}{2} &= k \operatorname{dn}(\sqrt{r}\,\varphi) \operatorname{sn}(\sqrt{r}\,\varphi_t)-k\operatorname{sn}(\sqrt{r}\,\varphi) \operatorname{dn}(\sqrt{r}\,\varphi_t), \\ \cos \frac{\theta_t}{2} &= \operatorname{dn}(\sqrt{r}\,\varphi) \operatorname{dn}(\sqrt{r}\,\varphi_t)+k^2\operatorname{sn}(\sqrt{r}\,\varphi) \operatorname{sn} (\sqrt{r}\,\varphi_t), \\ x_t &= \frac{2}{\sqrt r} \operatorname{dn}^2 (\sqrt r\,\varphi) \bigl(\operatorname{E}(\sqrt r\,\varphi_t)- \operatorname{E}(\sqrt r\,\varphi)\bigr) \\ &\qquad+\frac{4k^2}{\sqrt r}\operatorname{dn}(\sqrt{r}\,\varphi) \operatorname{sn}(\sqrt{r}\,\varphi) \bigl(\operatorname{cn}(\sqrt{r}\,\varphi)- \operatorname{cn} (\sqrt{r}\,\varphi_t)\bigr) \\ &\qquad+\frac{2k^2 }{\sqrt r} \operatorname{sn}^2(\sqrt{r}\,\varphi) \bigl(\sqrt r\,t+\operatorname{E}(\sqrt r\,\varphi)- \operatorname{E}(\sqrt r\,\varphi_t)\bigr)-t, \\ y_t &= \frac{2k}{\sqrt r}(2 \operatorname{dn}^2(\sqrt{r}\,\varphi)-1) \bigl(\operatorname{cn}(\sqrt{r}\,\varphi)- \operatorname{cn}(\sqrt{r}\,\varphi_t)\bigr) \\ &\qquad-\frac{2k}{\sqrt r}\operatorname{sn}(\sqrt{r}\,\varphi) \operatorname{dn}(\sqrt{r}\,\varphi) \bigl[2\bigl(\operatorname{E}(\sqrt r\,\varphi_t)- \operatorname{E}(\sqrt r\,\varphi)\bigr)-\sqrt r\,t\bigr]. \end{aligned} \end{equation*} \notag

If \lambda \in N_2, then

\begin{equation*} \begin{aligned} \, \sin \frac{\theta_t}{2} &=\pm\bigl(\operatorname{cn}(\sqrt r\,\psi) \operatorname{sn}(\sqrt r\,\psi_t)-\operatorname{sn}(\sqrt r\,\psi) \operatorname{cn}(\sqrt r\,\psi_t)\bigr), \\ \cos \frac{\theta_t}{2} &=\operatorname{cn}(\sqrt r\,\psi) \operatorname{cn}(\sqrt r\,\psi_t)+\operatorname{sn}(\sqrt r\,\psi) \operatorname{sn}(\sqrt r\,\psi_t), \\ x_t &= \frac{1}{\sqrt r}\bigl(1-2 \operatorname{sn}^2(\sqrt r\,\psi)\bigr) \biggl[\frac{2}{k}\bigl(\operatorname{E}(\sqrt r\,\psi_t)- \operatorname{E}(\sqrt r\,\psi)\bigr)-\frac{2-k^2}{k^2}\sqrt r\,t\biggr] \\ &\qquad+ \frac{4}{k \sqrt r} \operatorname{cn}(\sqrt r\,\psi) \operatorname{sn}(\sqrt r\,\psi)\bigl(\operatorname{dn}(\sqrt r\,\psi)- \operatorname{dn}(\sqrt r\,\psi_t)\bigr), \\ y_t &= \pm \biggl(\frac{2}{k\sqrt r} \bigl(2\operatorname{cn}^2(\sqrt r\,\psi)-1\bigr) \bigl(\operatorname{dn}(\sqrt r\,\psi)-\operatorname{dn}(\sqrt r\,\psi_t)\bigr) \\ &\qquad- \frac{2}{\sqrt r} \operatorname{sn}(\sqrt r\,\psi) \operatorname{cn}(\sqrt r\,\psi)\biggl[\frac{2}{k} \bigl(\operatorname{E}(\sqrt r\,\psi_t)-\operatorname{E}(\sqrt r\,\psi)\bigr)- \frac{2-k^2}{k^2}\sqrt r\,t\biggr]\biggr), \end{aligned} \end{equation*} \notag
where \pm=\operatorname{sign} c and \psi_t=\varphi_t/k=(\varphi+t)/k.

If \lambda \in N_3, then

\begin{equation*} \begin{gathered} \, \begin{aligned} \, \sin \frac{\theta_t}{2} &= \pm \biggl(\frac{\tanh (\sqrt r\,\varphi_t)}{\cosh (\sqrt r\,\varphi)}- \frac{\tanh (\sqrt r\,\varphi)} {\cosh (\sqrt r\,\varphi_t)}\biggr), \\ \cos \frac{\theta_t}{2} &= \frac{1}{\cosh (\sqrt r\,\varphi) \cosh (\sqrt r\,\varphi_t)}+\tanh (\sqrt r\,\varphi) \tanh (\sqrt r\,\varphi_t), \end{aligned} \\ \begin{aligned} \, x_t &=(1-2\tanh^2(\sqrt r\,\varphi)) t +\frac{4\tanh (\sqrt r\,\varphi)} {\sqrt r\,\cosh (\sqrt r\,\varphi)} \biggl(\frac{1}{\cosh (\sqrt r\,\varphi)} -\frac{1}{\cosh (\sqrt r\,\varphi_t)}\biggr), \\ y_t &=\pm\biggl[\frac{2}{\sqrt r} \biggl(\frac{2}{\cosh^2(\sqrt r\,\varphi)}-1\biggr) \biggl(\frac{1}{\cosh (\sqrt r\,\varphi)} -\frac{1}{\cosh (\sqrt r\,\varphi_t)}\biggr)\biggr. -2\,\frac{\tanh (\sqrt r\,\varphi)} {\cosh (\sqrt r\,\varphi)}\,t \biggr], \end{aligned} \end{gathered} \end{equation*} \notag
where \pm=\operatorname{sign} c.

If \lambda \in N_4 \cup N_5 \cup N_7, then

\begin{equation*} \theta_t=0, \quad x_t=t, \quad\text{and}\quad y_t=0. \end{equation*} \notag

If \lambda \in N_6, then

\begin{equation*} \theta_t=ct, \quad x_t=\frac{\sin (ct)}{c}\,, \quad y_t=\frac{1-\cos (ct)}{c}\,. \end{equation*} \notag

Euler elasticae. The projections of extremal trajectories onto the (x,y)-plane are Euler elasticae. Their equations are

\begin{equation} \begin{gathered} \, \dot x=\cos \theta, \quad \dot y=\sin \theta, \nonumber \\ \ddot \theta=-r \sin(\theta-\gamma), \qquad r,\gamma \equiv \operatorname{const}. \end{gathered} \end{equation} \tag{2.34}
Depending on the energy of the pendulum E=\dot\theta^2/2-r \cos(\theta-\gamma) \in [-r,+\infty) and the value of the Casimir function r \geqslant 0, elasticae have qualitatively different types, which were discovered by Euler.

If the energy E takes the minimum value -r < 0, so that \lambda \in N_4, then the elastica (x_t,y_t) is a straight line. The corresponding motion of the pendulum (2.34) (Kirchhoff’s kinetic analogue) is staying in stable equilibrium.

If E \in (-r,r), r > 0, so that \lambda \in N_1, then the pendulum (2.34) oscillates between the extremal values of the angle and the angular velocity \dot\theta changes sign. The corresponding elasticae have inflection points for \dot \theta=0 and vertices for |\dot\theta|=\max, because \dot \theta is the curvature of the elastic. Such elasticae are said to be inflectional (see Figs. 1923). Different cases in these figures depend on the value of the modulus of elliptic functions k=\sqrt{E+r}/(2r) \in (0,1):

\begin{equation*} \begin{aligned} \, k \in \biggl(0,\frac{1}{\sqrt 2}\biggr) &\quad\Longrightarrow\quad \text{Fig. 19}, \\ k=\frac{1}{\sqrt 2} &\quad\Longrightarrow\quad \text{Fig. 20}, \\ k \in \biggl(\frac{1}{\sqrt 2}\,,k_0\biggr) &\quad\Longrightarrow\quad \text{Fig. 21}, \\ k=k_0 &\quad\Longrightarrow\quad \text{Fig. 22}, \\ k \in \biggl(k_0,1\biggr) &\quad\Longrightarrow\quad \text{Fig. 23}. \end{aligned} \end{equation*} \notag
The value k=1/\sqrt 2 corresponds to the rectangular elastica, considered by J. Bernoulli (see § 2.6.1): see Fig. 20. The value k \approx 0.909 corresponds to a periodic elastica of the form of a figure-of-eight: see Fig. 22. As Euler noted, for k \to 0 inflectional elasticae are similar to sinusoids, which corresponds to a harmonic oscillator \ddot \theta=- r (\theta-\gamma) as Kirchhoff’s kinetic analogue; see Fig. 19.

If E=r > 0 and \theta-\gamma \ne \pi, so that \lambda \in N_3, then the pendulum (2.34) tends to an unstable equilibrium (\theta-\gamma=\pi, \dot \theta=0) along a separatrix of a saddle, and the corresponding elastica (an ‘Euler soliton’) makes one loop: see Fig. 24.

If E=r > 0 and \theta-\gamma=\pi, that is, \lambda \in N_5, then the pendulum (2.34) is in an unstable equilibrium (\theta-\gamma=\pi, \dot \theta=0) and the elastica is a straight line.

If E > r > 0, so that \lambda \in N_2, then Kirchhoff’s kinetic analogue is the pendulum (2.34) rotating anticlockwise (for \dot \theta > 0) or clockwise (for \dot \theta < 0). The corresponding elasticae have a non-zero curvature \dot \theta and no inflection points; they are said to be non-inflectional: see Fig. 25.

If r=0 and \dot \theta \ne 0, so that \lambda \in N_6, then the pendulum (2.34) rotates uniformly in zero gravity. The corresponding elastica is a circle.

Finally, if r=0 and \dot \theta=0, so that \lambda \in N_7, then the pendulum (2.34) rests in zero gravity (so that the equilibrium is unstable) and the elastica is a straight line.

In the pictures of elasticae in Figs. 1925 the ratio x/y is not always correctly reproduced for reasons of space.

Periodic motions of the pendulum (2.33) (or (2.34)) have the period

\begin{equation*} T=\begin{cases} 4\,\dfrac{K(k)}{\sqrt r}\,, & \lambda \in N_1, \\ 2\,\dfrac{k K(k)}{\sqrt r}\,, & \lambda \in N_2, \\ \dfrac{2\pi}{|c|}\,, & \lambda \in N_6. \end{cases} \end{equation*} \notag

2.6.6. Symmetries and Maxwell strata

The phase portrait of the pendulum (2.33) is preserved by the symmetry group \operatorname{Sym}, which is generated by the reflection \varepsilon^1 in the \gamma-axis, the reflection \varepsilon^2 in the c-axis, and the reflection \varepsilon^3 in the origin (\gamma,c)=(0,0):

\begin{equation*} \operatorname{Sym}= \{\operatorname{Id},\varepsilon^1,\varepsilon^2,\varepsilon^3\} \simeq \mathbb{Z}_2 \times \mathbb{Z}_2. \end{equation*} \notag
These symmetries extend in a natural way to the source space N=\mathfrak{g}^* and the target space G of the exponential map \operatorname{Exp}_t. If \nu=(\gamma,c,r) \in N, then
\begin{equation*} \varepsilon^i(\nu)=\nu^i=(\gamma^i,c^i,r) \in N, \end{equation*} \notag
where
\begin{equation*} (\gamma^1,c^1)=(\gamma_t,-c_t), \quad (\gamma^2,c^2)=(-\gamma_t, c_t), \quad (\gamma^3,c^3)=(-\gamma,-c). \end{equation*} \notag
If g=(x,y,\theta) \in G, then
\begin{equation*} \varepsilon^i(g)=(x^i,y^i,\theta^i) \in G, \end{equation*} \notag
where
\begin{equation*} \begin{aligned} \, (x^1, y^1, \theta^1)&= (x \cos \theta+y \sin \theta,-x \sin \theta+y \cos \theta,-\theta), \\ (x^2, y^2, \theta^2)&= (x \cos \theta+y \sin \theta, x \sin \theta-y \cos \theta, \theta), \\ (x^3, y^3, \theta^3)&=(x,-y,-\theta). \end{aligned} \end{equation*} \notag

Proposition 2.4. The group \operatorname{Sym}= \{\operatorname{Id},\varepsilon^1,\varepsilon^2,\varepsilon^3\} consists of the symmetries of the exponential map.

Theorem 2.29. For almost all extremal trajectories g_t=\operatorname{Exp}_t(\lambda), \lambda \in N, the first Maxwell time corresponding to the symmetry group \operatorname{Sym} has the following expression:

\begin{equation*} \begin{gathered} \, \lambda \in N_1 \quad\Longrightarrow\quad t_{\rm Max}^1=\frac{2}{\sqrt r} p_1(k), \\ \lambda \in N_2 \quad\Longrightarrow\quad t_{\rm Max}^1=\frac{2}{\sqrt r} kK(k), \\ \lambda \in N_6 \quad\Longrightarrow\quad t_{\rm Max}^1=\frac{2\pi}{|c|}\,, \\ \lambda \in N_3 \cup N_4 \cup N_5 \cup N_7 \quad\Longrightarrow\quad t_{\rm Max}^1=+\infty, \end{gathered} \end{equation*} \notag
where
\begin{equation*} p_1(k)=\min\bigl(2K(k),p_z^1(k)\bigr)=\begin{cases} 2 K(k), & k \in (0,k_0], \\ p_z^1(k), & k \in (k_0,1), \end{cases} \end{equation*} \notag
p=p_z^1(k) \in (K,3K) is the first positive root of the equation \operatorname{sn} p \operatorname{dn} p-(2\operatorname{E}(p)- p)\operatorname{cn}p=0, and k_0 \approx 0.909 is a root of the equation 2E(k)-K(k)=0.

An observation similar to Remark 2.1 and a result on invariant properties of the function t_{\rm Max}^1\colon N\to(0,+\infty] which is similar to Theorem 2.8 are true.

2.6.7. Estimates for the conjugate time

For Euler elasticae, a very important question from the point of view of applications is their local optimality since it means the stability of the elastica under small perturbations of the profile such that the endpoints and tangents at these endpoints are fixed. From the theoretic point of view answering this question is a step towards the investigation of the global optimality of elasticae.

Theorem 2.30. Let \lambda=(k,\varphi,r) \in N_1. Then the first conjugate time t_{\rm conj}^1(\lambda) on the trajectory \operatorname{Exp}_t(\lambda) belongs to the closed interval with endpoints 4 K(k)/\sqrt r and 2 p_1(k)/\sqrt r, namely,

\begin{equation*} \begin{alignedat}{3} &(1)&\quad k &\in (0,k_0) &\quad\Longrightarrow\quad t_{\rm conj}^1 &\in \biggl[\frac{4K(k)}{\sqrt r}\,, \frac{2 p_1^1(k)}{\sqrt r}\biggr], \\ &(2)&\quad k &=k_0 &\quad\Longrightarrow\quad t_{\rm conj}^1&=\frac{4K(k)}{\sqrt r}= \frac{2 p_1^1(k)}{\sqrt r}\,, \\ &(3)&\quad k &\in (k_0,1) &\quad\Longrightarrow\quad t_{\rm conj}^1 &\in \biggl[\frac{2 p_1^1(k)}{\sqrt r}\,, \frac{4K(k)}{\sqrt r}\biggr], \end{alignedat} \end{equation*} \notag
where the function p_1(k) was defined in Theorem 2.29.

Corollary 2.2. Let \lambda=(k,\varphi,r) \in N_1. Then

\begin{equation*} \begin{alignedat}{3} &(1)&\quad k &\in (0,k_0) &\quad\Longrightarrow\quad t_{\rm conj}^1 &\in [T, t_1^1] \subset \biggl[T,\frac{3T}{2}\biggr), \quad t_1^1=\frac{2 p_1^1}{\sqrt r} \in \biggl(T,\frac{3T}{2}\biggr), \\ &(2)&\quad k &=k_0 &\quad\Longrightarrow\quad t_{\rm conj}^1&=T, \\ &(3)&\quad k &\in (k_0,1) &\quad\Longrightarrow\quad t_{\rm conj}^1 &\in [t_1^1,T] \subset \biggl(\frac{T}{2}\,,T\biggr],\quad t_1^1=\frac{2p_1^1}{\sqrt r} \in \biggl(\frac{T}{2}\,,T\biggr), \end{alignedat} \end{equation*} \notag
where T=4 K(k)/\sqrt r is the period of oscillations of the pendulum (2.33) (or (2.34)).

Corollary 2.3. Let \lambda=(k,\varphi,r) \in N_1 and t_1 > 0, and let

\begin{equation} \Gamma=\{(x_t, y_t) \mid t \in [0, t_1]\},\qquad g(t)=(x_t, y_t, \theta_t)=\operatorname{Exp}_t(\lambda), \end{equation} \tag{2.35}
be an arc of the corresponding elastica.

(1) If \Gamma contains no inflection points, then it is locally optimal.

(2) If k \in (0,k_0] and \Gamma contains precisely one inflection point, then it is locally optimal.

(3) If \Gamma contains at least three interior inflection points, then it is not locally optimal.

Consider arcs of inflectional elasticae (2.35) with midpoint at a vertex, that is, assume that the local extremum of the curvature of the elastica is attained at (x_{t_1/2},y_{t_1/2}). For examples of such arcs, see Fig. 26.

Set t_1^1=(2/\sqrt r\,)p_1(k), where the function p_1(k) was defined in Theorem 2.29.

Now we consider arcs of inflectional elasticae (2.35) centred at an inflection point, that us, we assume that the elastica has zero curvature at (x_{t_1/2},y_{t_1/2}). For examples of such arcs, see Fig. 27.

Theorem 2.33. Let \lambda \in N_2 \cup N_3 \cup N_6. Then the extremal trajectory g(t)=\operatorname{Exp}_t(\lambda) contains no conjugate points for t > 0.

Thus, if an arc of an elastica contains no inflection points, then it is stable; if it contains at least three interior inflection points, then it is unstable. If there are one or two inflection points, then the elastica can be stable or unstable alike.

2.6.8. The diffeomorphism structure of the exponential map

Let t_1=1, \operatorname{Exp}=\operatorname{Exp}_1, and

\begin{equation*} \mathcal{A}=\mathcal{A}_1=\{(x,y,\theta) \in G \mid x^2+y^2 < 1 \text{ or } (x,y,\theta)=(1,0,0)\}. \end{equation*} \notag
The case of general t_1 > 0 reduces to t_1=0 by homotheties of the (x,y)-plane:
\begin{equation*} (x,y,\theta,t,u,t_1,J) \mapsto (\tilde x,\tilde y,\tilde\theta,\tilde t, \tilde u,\tilde t_1,\tilde J)=(e^sx,e^sy,\theta,e^st,e^{-s}u,e^st_1,e^{-s}J). \end{equation*} \notag

Consider a subset of \mathcal{A} containing no fixed points of the reflections \varepsilon^1 and \varepsilon^2:

\begin{equation*} \begin{gathered} \, \widetilde{G}=\{g \in \mathcal{A} \mid \varepsilon^i (g) \ne g, \ i=1, 2\}= \biggl\{g \in \mathcal{A} \Bigm| \sin\biggl(\frac{\theta}{2}\biggr)P(g) \ne 0 \biggr\}, \\ P(g)=x \sin \frac{\theta}{2}-y \cos \frac{\theta}{2}\,, \end{gathered} \end{equation*} \notag
and consider its partition into connected components
\begin{equation*} \widetilde{G}=G_+ \sqcup G_-, \end{equation*} \notag
where
\begin{equation*} G_{\pm}=\{ g \in G \mid \theta \in (0, 2\pi), \ x^2+y^2 < 1, \ \operatorname{sign} P(g)=\pm 1 \}. \end{equation*} \notag
Also consider the open dense subset of the space of potentially optimal extremal trajectories
\begin{equation*} \widetilde{N}=\biggl\{\lambda \in \bigcup_{i=1}^3 N_i \Bigm| t_1 < t_{\rm Max}^1(\lambda), \ c_{t_1/2} \sin\gamma_{t_1/2} \ne 0\biggr\}, \end{equation*} \notag
and its connected components
\begin{equation*} \widetilde{N}=\bigsqcup_{i=1}^4 D_i, \end{equation*} \notag
where
\begin{equation*} \begin{gathered} \, D_1=\biggl\{\lambda \in \bigcup_{i=1}^3 N_i \Bigm| t_1 < t_{\rm Max}^1(\lambda), \ c_{t_1/2} > 0, \ \sin \gamma_{t_1/2} > 0\biggr\}, \\ D_2=\biggl\{\lambda \in \bigcup_{i=1}^3 N_i \Bigm| t_1 < t_{\rm Max}^1(\lambda), \ c_{t_1/2} < 0, \ \sin \gamma_{t_1/2} > 0\biggr\}, \\ D_3=\biggl\{\lambda \in \bigcup_{i=1}^3 N_i \Bigm| t_1 < t_{\rm Max}^1(\lambda), \ c_{t_1/2} < 0, \ \sin \gamma_{t_1/2} < 0\biggr\}, \end{gathered} \end{equation*} \notag
and
\begin{equation*} D_4=\biggl\{\lambda \in \bigcup_{i=1}^3 N_i \Bigm| t_1 < t_{\rm Max}^1(\lambda), \ c_{t_1/2} > 0, \ \sin \gamma_{t_1/2} < 0\biggr\}. \end{equation*} \notag

Theorem 2.34. The following maps are diffeomorphisms:

\begin{equation*} \operatorname{Exp}\colon D_1\to G_+, \quad \operatorname{Exp}\colon D_2\to G_-, \quad \operatorname{Exp}\colon D_3\to G_+, \quad \operatorname{Exp}\colon D_4\to G_-. \end{equation*} \notag

Corollary 2.4. The map \operatorname{Exp}\colon\widetilde{N}\to \widetilde{G} is a two-sheeted cover.

2.6.9. Optimal elasticae for various boundary conditions

Generic boundary conditions. If g_1 \in G_+, then there exists a unique pair (\lambda_1,\lambda_3) \in D_1 \times D_3 such that \operatorname{Exp}(\lambda_1)=\operatorname{Exp}(\lambda_3)=g_1. The optimal trajectory is either q^1(t)=\operatorname{Exp}_t(\lambda_1) or q^3(t)=\operatorname{Exp}_t(\lambda_3), t \in [0,1]. As the optimal trajectory we must take the one at which the quality functional J[q^i(\,\cdot\,)]=\dfrac{1}{2}\displaystyle\int_0^1 (c_t^i)^2\,dt takes the smaller value. If J[q^1(\,\cdot\,)]=J[q^3(\,\cdot\,)], then both trajectories are optimal (we show this case in Fig. 28).

If g_1 \in G_-, then we select optimal elasticae in a similar way among the ones corresponding to the covectors \lambda_2 \in D_2 and \lambda_4 \in D_4 for which \operatorname{Exp}(\lambda_2)=\operatorname{Exp}(\lambda_4)= g_1.

The case (x_1,y_1,\theta_1)=(1,0,0). The optimal elastica is the line segment (x,y)=(t,0), t \in [0,1].

The case x_1>0, y_1=0, \theta_1=\pi. In this case g_1 \in G_+ and the equation \operatorname{Exp}(\lambda)=g_1, \lambda \in \widetilde{G}, has too roots, \lambda_1 \in D_1 and \lambda_3 \in D_3. The trajectories q^1(t)=\operatorname{Exp}_t(\lambda_1) and q^3(t)=\operatorname{Exp}_t(\lambda_3) correspond to the same value of J, so both of them are optimal. The corresponding optimal inflection elasticae are mirror symmetric with respect to the x-axis (see Fig. 29).

The case x_1<0, y_1=0, \theta_1=\pi. This is similar to the previous case (see Fig. 30).

The case x_1=0, y_1=0, \theta_1=\pi. The only optimal elastica, a ‘water drop’, is defined by the parameters \lambda=(\varphi,k,r) \in N_1, where \varphi=\dfrac{\tau}{2p}-\dfrac{1}{2} , r=4 p^2, \operatorname{sn}\tau=0, 1-2k^2\operatorname{sn}^2 p=0, and 2\operatorname{E}(p)-p=0 (see Fig. 31).

The case x_1=0, y_1=0, \theta_1=0. There exist two optimal elasticae, which are circles mirror symmetric with respect to the x-axis.

The case x_1>0, y_1=0, \theta_1=0 . There are two or four optimal elasticae: there exists x_* \in (0.4,0.5) such that

The case x_1<0, y_1=0, \theta_1=0. There are two optimal non-inflectional elasticae (see Fig. 33).

2.6.10. Bibliographic comments

The first classical study of elasticae was presented by Euler in [70].

Subsection 2.6.1 concerning the history of the problem of elasticae is based on the classical sources [105], [153], and [154]. A remarkable presentation of this history was given in [99].

Note that the problem of elasticae had long been of purely theoretical interest as an example of the use of the theory of elliptic functions (see, for instance, [78] and [105]). In connection with widespread introduction of steel in project design and construction of flexible thin-walled structures, which encouraged the development of the stability theory of deformed systems, the solution of the problem of elasticae became a question of practical importance. In particular, the following questions arose, which are important for applications to engineering: what is the behaviour of a compressed rack under loads higher than the Euler critical value, what is the shape of the rack in this case, is it unique and stable? A number of papers (see [49], [69], [75], [96], [119], [148], [149], [161]) were concerned with these questions, considering various conditions for supporting and loading inextensible elastic rods. During the last decades the interest to elasticae has grown because of applications of the theory of flexible rods to the analysis of micro- and nanostructures in biology and nanotechnology [76], [84], [115], [151]. It has been confirmed that there exists a variety of equilibrium shapes for a fixed load.

Subsections 2.6.22.6.6 are based on [130], § 2.6.7 is based on [131] and [133], and §§ 2.6.8 and 2.6.9 on [137] and [136].

Problems of elasticae were also considered in [2], [9], [12], [79], [87]–[89], [106], [107], [117], and [142].

2.7. A left-invariant sub-Riemannian problem of general form on the group \operatorname{SO}(3)

2.7.1. The problem statement

It follows from the classification of contact left- invariant sub-Riemannian structures on three-dimensional Lie groups [1] that, given an arbitrary structure of this type on the group G=\operatorname{SO}(3), we can find an orthonormal frame (X_1,X_2) with multiplication table

\begin{equation} [X_2,X_1]=X_3, \quad [X_1,X_3]=(\kappa+\chi)X_2, \quad [X_2,X_3]=(\chi-\kappa)X_1, \end{equation} \tag{2.36}
where \kappa and \chi, \kappa \geqslant \chi \geqslant 0, are differential invariants of the sub-Riemannian structure. A uniform extension of X_1 and X_2 changes the distance function and both invariants \kappa and \chi in the same proportion. In [1] the normalization \kappa^2+\chi^2=1 was used. In this section it is more convenient to assume that \kappa+\chi=1 and use the invariant a=\sqrt{2\chi} \in [0,1). The case a=0 corresponds to the axially symmetric sub-Riemannian structure considered in [55].

The following vector fields satisfy the multiplication table (2.36):

\begin{equation*} X_1(g)=L_{g*} A_2, \quad X_2(g)=\sqrt{1-a^2}\,L_{g*} A_1, \quad X_3(g)=\sqrt{1-a^2}\,L_{g*} A_3, \end{equation*} \notag
where the basis A_1, A_2, A_3 of the Lie algebra \mathfrak{g}=\mathfrak{so}(3) has the form
\begin{equation} A_1=\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix},\quad A_2=\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix},\quad A_3=\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \end{equation} \tag{2.37}

2.7.2. A parametrization of geodesics

Abnormal extremal trajectories are constant in time.

To parametrize normal geodesics consider the Hamiltonians

\begin{equation*} h_i(\lambda)=\langle \lambda,X_i(g)\rangle,\quad i=1,2,3,\qquad H=\frac{1}{2}(h_1^2+h_2^2). \end{equation*} \notag
Extremals with normal parametrization are themselves parametrized by points in the cylinder C=\mathfrak{g}^* \cap \{H=1/2\}. We introduce the coordinates (\psi,c) on this cylinder:
\begin{equation*} h_1=\cos \psi, \quad h_2=- \sin \psi, \quad h_3=c. \end{equation*} \notag

The normal Hamiltonian system of the Pontryagin maximum principle has the form

\begin{equation} \dot h_1=h_2 h_3, \quad \dot h_2=- h_1 h_3, \quad \dot h_3=a^2 h_1 h_2, \end{equation} \tag{2.38}
\begin{equation} \dot g=h_1 X_1(g)+h_2 X_2(g). \end{equation} \tag{2.39}
The vertical subsystem (2.38) defines the pendulum equation
\begin{equation} \dot \psi=c, \quad \dot c=-\frac{a^2}{2} \sin(2\psi) \end{equation} \tag{2.40}
on C. The cylinder is stratified by invariant sets of the system (2.40),
\begin{equation*} C=\bigsqcup_{i=1}^5 C_i, \end{equation*} \notag
which are defined in terms of the full energy E=2c^2-a^2\cos(2\psi) of the pendulum:
\begin{equation*} \begin{gathered} \, C_1=\{\lambda\in C\mid E\in(-a^2,a^2)\}\quad (\text{the region inside the separatrices}), \\ C_2=\{\lambda\in C\mid E\in(a^2, +\infty)\}\quad (\text{the region outside the separatrices}), \\ C_3=\{\lambda\in C\mid E=a^2, c \ne 0\}\quad (\text{the separatrices}), \\ C_4=\{\lambda\in C\mid E=-a^2\}\quad (\text{the stable equilibrium}), \end{gathered} \end{equation*} \notag
and
\begin{equation*} C_5=\{\lambda\in C\mid E=a^2, c=0\}\quad (\text{the unstable equilibrium}). \end{equation*} \notag
On C_1, C_2, and C_3 we introduce coordinates (\theta,k) which straighten the equation (2.40). In the domain C_1 we have
\begin{equation*} \begin{gathered} \, \sin\psi=s_1k\operatorname{sn}(a\theta,k), \qquad \cos\psi=s_1\operatorname{dn}(a\theta,k), \qquad c=ak\operatorname{cn}(a\theta,k), \\ s_1=\operatorname{sign}\cos\psi,\qquad k=\sqrt{\frac{E+a^2}{2a^2}}\in(0,1),\qquad \theta\in\biggl[0,\frac{4K(k)}{a}\biggr]. \end{gathered} \end{equation*} \notag
In the domain C_2,
\begin{equation*} \begin{gathered} \, \sin\psi=s_2\operatorname{sn}\biggl(\frac{a\theta}{k}\,,k\biggr),\qquad \cos\psi=\operatorname{cn}\biggl(\frac{a\theta}{k}\,,k\biggr), \qquad c=\frac{s_2a}{k}\operatorname{dn}\biggl(\frac{a\theta}{k}\,,k\biggr), \\ s_2=\operatorname{sign}c,\qquad k=\sqrt{\frac{2a^2}{E+a^2}}\in (0,1),\qquad \theta \in\biggl[0,\frac{4kK(k)}{a}\biggr]. \end{gathered} \end{equation*} \notag
On the set C_3,
\begin{equation*} \sin\psi=s_1s_2\tanh(a\theta),\ \ \cos\psi=\frac{s_1}{\cosh(a\theta)}\,,\ \ c=\frac{s_2a}{\cosh(a\theta)}\,, \ \ \theta \in(-\infty,+\infty), \ \ k=1. \end{equation*} \notag

Then for (\psi_0,c_0) \in C_1 \cup C_2 \cup C_3 the pendulum equation has the solution \theta(t)=t+\theta_0, k \equiv \operatorname{const}. For (\psi_0,c_0) \in C_4 we have \psi \equiv \pi n, n \in \mathbb{Z}, c=0, while for (\psi_0,c_0) \in C_5 we have \psi \equiv-\pi/2+\pi n, n \in \mathbb{Z}, c=0.

To parametrize the solutions of the horizontal subsystem (2.39) we represent them in terms of the Euler angles:

\begin{equation*} g_t=\exp(-\varphi_1(0) A_3) \exp(-\varphi_2(0) A_1) \exp(\varphi_3(t) A_3) \exp(\varphi_2(t) A_1) \exp(\varphi_1(t) A_3). \end{equation*} \notag
Then
\begin{equation} \cos \varphi_2 =\frac{c}{\sqrt M}\,, \qquad \sin \varphi_2 =\sqrt{\frac{M-c^2}{M}}\,, \end{equation} \tag{2.41}
\begin{equation} \cos \varphi_1 =\frac{h_1\sqrt{1-a^2}}{\sqrt{M-c^2}}\,, \qquad \sin \varphi_1 =\sqrt{\frac{h_2}{M-c}}\,, \end{equation} \tag{2.42}
where M=h_2^2+(1-a^2) h_1^2+c^2 is a first integral of the subsystem (2.38).

The angle \varphi_3 satisfies the equation

\begin{equation} \dot\varphi_3=\frac{\sqrt{M (1-a^2)}}{M-c^2}= \frac{\sqrt{M(1-a^2)}}{1-a^2 h_1^2}; \end{equation} \tag{2.43}
it is a monotone function of time because
\begin{equation*} 0 < \sqrt{M(1-a^2)} \leqslant \dot \varphi_3 \leqslant \sqrt{\frac{M}{1-a^2}}\,. \end{equation*} \notag
Solutions of this equation have the following form:
  • \bullet in C_1,
    \begin{equation*} \begin{aligned} \, \varphi_3&=\sqrt{\frac{1-a^2(1-k^2)}{a^2(1-a^2)}}\, \biggl[\Pi\biggl(\frac{a^2k^2}{a^2-1}\,; \operatorname{am}(a\theta,k),k\biggr) \\ &\qquad-\Pi\biggl(\frac{a^2k^2}{a^2-1}\,; \operatorname{am}(a\theta_0,k),k\biggr)\biggr]; \end{aligned} \end{equation*} \notag
  • \bullet in C_2,
    \begin{equation*} \begin{aligned} \, \varphi_3&=\sqrt{\frac{k^2+a^2(1-k^2)}{a^2(1-a^2)}}\, \biggl[\Pi\biggl(\frac{a^2}{a^2-1}\,;\operatorname{am} \biggl(\frac{a\theta}{k}\,,k\biggr),k \biggr) \\ &\qquad-\Pi\biggl(\frac{a^2}{a^2-1}\,;\operatorname{am} \biggl(\frac{a\theta_0}{k}\,,k\biggr),k\biggr)\biggr]; \end{aligned} \end{equation*} \notag
  • \bullet in C_3,
    \begin{equation*} \begin{aligned} \, \varphi_3&=\sqrt{1-a^2}\,t+\biggl[\arctan\biggl(\frac{a}{\sqrt{1-a^2}}\tanh(a\theta)\biggr) \\ &\qquad-\arctan\biggl(\frac{a}{\sqrt{1-a^2}}\tanh(a\theta_0)\biggr)\biggr]; \end{aligned} \end{equation*} \notag
  • \bullet in C_4,
    \begin{equation*} \varphi_3=t; \end{equation*} \notag
  • \bullet in C_5,
    \begin{equation*} \varphi_3=\sqrt{1-a^2}\,t. \end{equation*} \notag
Here \operatorname{am}(\varphi,k) is the Jacobi amplitude and \Pi(n;\varphi,k) is an elliptic integral of the third kind. Note that, as we see from the last two expressions, geodesics corresponding to the domains C_4 and C_5 are rotations about the horizontal basis vectors e_1=(1,0,0) \in \mathbb{R}^3 and e_2=(0,1,0) \in \mathbb{R}^3.

2.7.3. Periodic geodesics

Proposition 2.5. For each a \in (0,1) there exist infinitely many geodesics in the corresponding sub-Riemannian problem on \operatorname{SO}(3).

For \lambda \in C_1 (or \lambda \in C_2) the relevant geodesic can only have period T=4K(k)/a (T=4k K(k)/a, respectively); such trajectories exist if and only if \varphi_3(m T)=2 \pi n for some n,m \in \mathbb{N}. This equality holds along a geodesic if and only if

\begin{equation} \frac{n}{m} > \frac{1}{a} \end{equation} \tag{2.44}
in the case of C_1 or
\begin{equation} \frac{n}{m} > 1 \end{equation} \tag{2.45}
in the case of C_2. Different irreducible fractions n/m \in \mathbb{Q}_+ correspond to different periodic geodesics.

Proposition 2.6. Every periodic geodesic for \lambda \in C_1 (or \lambda \in C_2) is uniquely defined by an irreducible fraction n/m \in \mathbb{Q}_+ satisfying (2.44) (respectively, (2.45)).

For \lambda \in C_3 geodesics are aperiodic.

For \lambda \in C_4 \cup C_5 geodesics are periodic.

Since \pi_1(\operatorname{SO}(3))=\mathbb{Z}_2, there exist only two homotopy classes of closed paths on \operatorname{SO}(3). The following result shows which periodic geodesics are contractible (null homotopic).

Proposition 2.7. Consider a periodic geodesic g_t \in \operatorname{SO}(3) which is the projection of an extremal \lambda_t \in C_1 (or \lambda_t \in C_2) and is defined by an irreducible fraction n/m \in \mathbb{Q}_+ satisfying (2.44) (respectively, (2.45)). Then g_t is reducible if and only if n is even.

All geodesics corresponding to \lambda \in C_4 \cup C_5 are non-contractible.

2.7.4. Conditions for optimality

Consider the unit 3-sphere in the algebra of quaternions

\begin{equation*} S^3=\{q=q^0+i q^1+j q^2+k q^3 \in \mathbb{H} \mid (q^0)^2+(q^1)^2+(q^2)^2+(q^3)^2=1\}. \end{equation*} \notag
It is simply connected and covers the group \operatorname{SO}(3) with multiplicity two. The geodesic g_t \in \operatorname{SO}(3) lifts to a curve q_t \in S^3, q_0=1, of the form
\begin{equation*} q_t=\exp\biggl(-\frac{\varphi_1(0)}{2}k\biggr) \exp\biggl(-\frac{\varphi_2(0)}{2}i\biggr) \exp\biggl(\frac{\varphi_3(t)}{2}k\biggr) \exp\biggl(\frac{\varphi_2(t)}{2}i\biggr) \exp\biggl(\frac{\varphi_1(t)}{2}k\biggr), \end{equation*} \notag
where the Euler angles \varphi_i(t) coincide with the analogous angles in (2.41)(2.43).

Theorem 2.35. Let g_t \in \operatorname{SO}(3), t \in [0,t_1], be a geodesic, and let q_t \in S^3, q_0=1, be its lift to S^3. Let \theta_t be the corresponding straightened coordinate variable of the pendulum system (2.40), and let \tau=a(\theta_0+t/2).

Then g_t is not optimal, provided that one of the following conditions holds for some t \in (0,t_1):

(1) q_t^0=0;

(2) q_t^1=0 and \operatorname{sn} \tau \ne 0 for \lambda_0 \in C_1 \cup C_2, or \tau \ne 0 for \lambda_0 \in C_3;

(3) q_t^2=0 and \operatorname{cn} \tau \ne 0 for \lambda_0 \in C_1;

(4) q_t^3=0 and \operatorname{cn} \tau \ne 0 for \lambda_0 \in C_2.

2.7.5. Bibliographic comments

The results presented in this section were obtained in [46].

2.8. The problem of a ball rolling over a plane without twisting or slipping

2.8.1. The history of the problem

In 1983 Hammersley [83] considered the following Oxford ball problem. A unit ball lies on an infinite horizontal plane. The state of the ball is determined by its orientation in space and its position on the plane. We must take the ball from the given initial state to a prescribed terminal state by a sequence of rollings. Each rolling proceeds along a straight line on the plane: we select the distance and direction of each rolling, but there must be no twisting or slipping, that is, the axis of rotation must remain horizontal and the velocity of the ball at the point of contact with the plane must be equal to zero. What minimum number of rollings N do we require to attain any terminal state? With the help of quaternions Hammersley showed that N \in \{3,4\}. Next he stated two continuous versions of the ball problem:

In problem (b) Hammersley pointed out that the optimal curve \Gamma is a line segment or an arc of a circle and 0 \leqslant T \leqslant \pi\sqrt 3 , where the upper bound is only attained when the required change of orientation is the rotation of the sphere through \pi about the vertical axis.

In the final section of [83], entitled “Variants for the twenty-first century” Hammersley stated a number of variants and generalizations of these problems, which are still open.

In 1986, Arthgurs and Walsh [29] examined problem (a). Using quaternions and the Pontryagin maximum principle they showed that the point of contact between the ball and the (x,y)-plane satisfies the equations

\begin{equation*} \begin{gathered} \, \dot x=\sin \psi, \quad \dot y=-\cos \psi, \\ \ddot \psi=\lambda \cos(\psi+\varepsilon), \qquad \lambda,\varepsilon \equiv \operatorname{const}. \end{gathered} \end{equation*} \notag
They observed that these equations are integrable by elliptic integrals of the first and third kind, and left the problem of optimal control to numerical investigation.

Independently of these papers, in 1993 Brockett and Dai [56] stated a ‘plate-ball problem’. They considered a ball which rolls without twisting or slipping between two horizontal plates which are placed at a distance equal to the diameter of the ball between them. They wrote out a control system of the form (2.46)(2.50) (see below) for the ball and showed that a nilpotent approximation to this system is equivalent to the control system (2.117) on the Cartan group (see § 2.10).

In the same year of 1993 Jurdjevic [86] considered thoroughly the problem of optimal rolling of a ball over a plane without twisting or slipping, where he relied on the statement due to Brockett and Dai [56] and was independent of [29] and [83]. Jurdjevic treated this problem as a left-invariant control problem on the Lie group G=\mathbb{R}^2\times\operatorname{SO}(3):

\begin{equation} \dot x=u_1, \qquad \dot y=u_2, \end{equation} \tag{2.46}
\begin{equation} \dot R=R\begin{pmatrix} 0 & 0 &-u_1\\ 0 & 0 & -u_2\\ u_1 & u_2 & 0 \end{pmatrix}, \end{equation} \tag{2.47}
\begin{equation} g=(x,y,R) \in G, \quad u=(u_1,u_2) \in \mathbb{R}^2, \end{equation} \tag{2.48}
\begin{equation} g(0)=\operatorname{Id}=(0,0,E_{11}+E_{22}+E_{33}), \qquad g(t_1)=g_1 , \end{equation} \tag{2.49}
\begin{equation} J=\frac{1}{2} \int_0^{t_1}(u_1^2+u_2^2)\,dt \to \min. \end{equation} \tag{2.50}
Next he used the Pontryagin maximum principle in the invariant form for Lie groups (see [6] and [88]) and obtained the following results. The optimal abnormal controls are constant in time, they result in rolling along a straight line; these controls are non-strictly abnormal. Normal extremals are trajectories of the Hamiltonian system with Hamiltonian
\begin{equation*} H=\frac{1}{2}(h_1-H_2)^2+\frac{1}{2}(h_2+H_1)^2, \end{equation*} \notag
where the Hamiltonians h_1 and h_2 correspond to the vector fields \partial/\partial x and \partial/\partial y, while H_1, H_2, and H_3 correspond to the left-invariant fields on \operatorname{SO}(3) with generators
\begin{equation*} A_1=E_{32}-E_{23}, \qquad A_2=E_{13}-E_{31}, \quad\text{and}\quad A_3=E_{21}-E_{12}, \end{equation*} \notag
defining rotations of three-dimensional space. The vertical subsystem of this Hamiltonian system is as follows:
\begin{equation*} \begin{aligned} \, \dot h_1&=\dot h_2=0, \\ \dot H_1&=(h_1-H_2) H_3, \\ \dot H_2&=(h_2+H_1)H_3, \\ \dot H_3&=-h_1 H_1-h_2 H_2. \end{aligned} \end{equation*} \notag
This subsystem has the integrals h_1, h_2, H, and M=H_1^2+H_2^2+H_3^2, so it is integrable. In addition, it is reduced to a pendulum equation. To integrate the equations for the orientation R(t) \in\operatorname{SO}(3) of the ball, the Euler angles \varphi_1, \varphi_2, and \varphi_3 are introduced; differential equations for these angles are obtained, qualitatively investigated, and integrated in part. It is shown that the trajectory of the point of contact (x(t),y(t)) between the ball and the plane is an Euler elastica (see § 2.6). A connection between the type of the intersection between the cylinder \{H=\operatorname{const}\} and the sphere \{M=\operatorname{const}\}, the type of the elastica, and the qualitative behaviour of the Euler angles \varphi_1, \varphi_2, and \varphi_3 is discovered.

The rest of this section is based on [114] and [132].

2.8.2. The statement of the problem

A mechanical setting. Consider the mechanical system of two horizontal planes and a sphere tangent to these planes. The lower plane is fixed, and the sphere rolls over it without twisting or slipping, driven by the horizontal motion of the upper plane. The state of this system is described by the point of contact of the sphere with the lower plane and the orientation of the sphere in three-dimensional space. One must roll the sphere from a prescribed initial state to a prescribed terminal state so that the curve drawn by the point of contact in the plane has the minimum length. The velocity of the upper plane or, equivalently, the velocity of the centre of the sphere is the control.

We consider the kinematics of the system, so can ignore the presence of the upper plane and consider how the sphere rolls over the (lower) plane without slipping or twisting. ‘No slipping’ means that the instantaneous velocity of the point of contact of the sphere to the plane is zero, and ‘no twisting’ means that the vector of angular velocity of the sphere is horizontal. Rolling a surface over other surface without twisting or slipping models the work of a robotic arm, and problems concerning such motions are of great interest in mechanics, robotics, and control theory (see, for instance, [6], [48], [97], [100], and [108]).

A mathematical setting. Let e_1, e_2, e_3 is a fixed right-handed frame in \mathbb{R}^3 such that the vectors e_1 and e_2 lie in the plane \mathbb{R}^2 \cong (\mathbb{R}^2,0) \subset \mathbb{R}^3 on which a unit sphere S^2 is rolling, and e_3 points to the half-space containing this sphere. The frame e_1, e_2, e_3 is fixed at a point O \in (\mathbb{R}^2,0). Let f_1, f_2, f_3 be a movable right-handed frame attached to the rolling sphere S^2. We denote the coordinates of a point in \mathbb{R}^3 with respect to the basis e_1, e_2, e_3 by (x,y,z), and its coordinates with respect to the basis f_1, f_2, f_3 shifted to O by (X,Y,Z). Thus,

\begin{equation*} x e_1+y e_2+z e_3=X f_1+Y f_2+Z f_3. \end{equation*} \notag
Let R \in \operatorname{SO}(3) be the matrix taking the coordinates of a point with respect to the fixed frame e_1, e_2, e_3 to its coordinates with respect to the movable frame f_1, f_2, f_3, that is,
\begin{equation*} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}= R \begin{pmatrix} x \\ y \\ z \end{pmatrix}. \end{equation*} \notag
The state of the system ‘the sphere S^2 and the plane \mathbb{R}^2’ is described by the coordinates (x,y) of the point of contact between S^2 and \mathbb{R}^2 and the rotation matrix R. As control we take the vector (u_1,u_2) of the velocity of the centre of the sphere. The problem of the optimal rolling of the sphere over the plane is formalized as the optimal control problem
\begin{equation} \dot x=u_1, \end{equation} \tag{2.51}
\begin{equation} \dot y=u_2, \end{equation} \tag{2.52}
\begin{equation} \dot R=R(u_2 A_1-u_1 A_2), \end{equation} \tag{2.53}
\begin{equation} Q=(x,y,R) \in G=\mathbb{R}^2 \times \operatorname{SO}(3), \end{equation} \tag{2.54}
\begin{equation} u=(u_1, u_2) \in \mathbb{R}^2, \end{equation} \tag{2.55}
\begin{equation} Q(0)=Q_0=(0, 0, \operatorname{Id}), \qquad Q(t_1)=Q_1, \end{equation} \tag{2.56}
\begin{equation} l=\int_0^{t_1} \sqrt{u_1^2+u_2^2} \, dt \to \min. \end{equation} \tag{2.57}
Here and in what follows we use basis matrices of the Lie algebra \mathfrak{so}(3), namely,
\begin{equation} A_1=\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix},\quad A_2=\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix},\quad\text{and}\quad A_3=\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \end{equation} \tag{2.58}

The left-invariant sub-Riemannian problem. Problem (2.51)(2.57) is a left- invariant sub-Riemannian problem on the Lie group G=\mathbb{R}^2 \times \operatorname{SO}(3). We consider the following left-invariant frame on this group:

\begin{equation*} e_1=\frac{\partial}{\partial x}\,, \quad e_2=\frac{\partial}{\partial y}\,, \quad V_i(R)=R A_i, \quad i=1,2,3. \end{equation*} \notag
In terms of the left-invariant fields
\begin{equation*} X_1=e_1-V_2\quad\text{and} \quad X_2=e_2+V_1 \end{equation*} \notag
the control system (2.51)(2.55) assumes the following form:
\begin{equation} \dot Q=u_1 X_1 (Q)+u_2 X_2(Q), \qquad Q \in G=\mathbb{R}^2 \times \operatorname{SO}(3), \quad (u_1, u_2) \in \mathbb{R}^2. \end{equation} \tag{2.59}
The functional (2.57) is the sub-Riemannian length functional for the left-invariant sub-Riemannian structure defined by the fields X_1 and X_2 as an orthonormal basis:
\begin{equation} \begin{gathered} \, l=\int_0^{t_1} \langle \dot Q,\dot Q\rangle^{1/2} \, dt \to \min, \\ \langle X_i,X_j\rangle=\delta_{ij}, \qquad i,j=1, 2. \nonumber \end{gathered} \end{equation} \tag{2.60}

The existence of optimal controls. Recall that the matrix commutators [A_i,A_j]=A_i A_j-A_j A_i are as follows:

\begin{equation*} [A_1, A_2]=A_3, \qquad [A_2, A_3]=A_1, \qquad [A_3, A_1]=A_2. \end{equation*} \notag
The multiplication table in the Lie algebra \mathfrak{g}=\mathbb{R}^2 \oplus \mathfrak{so}(3)= \operatorname{span}(e_1, e_2, V_1, V_2, V_3) of G has the following form:
\begin{equation*} \operatorname{ad}e_i=0, \qquad [V_1, V_2]=V_3, \qquad [V_2, V_3]=V_1, \qquad [V_3, V_1]=V_2. \end{equation*} \notag

By the equalities

\begin{equation*} [X_1, X_2]=V_3, \qquad [X_1, V_3]=- V_1, \quad\text{and}\quad [X_2, V_3]=- V_2 \end{equation*} \notag
the fields X_1 and X_2 on the right-hand side of (2.59) generate a Lie algebra \mathfrak{g}. By the Rashevskii–Chow theorem system (2.59) is completely controllable. By Filippov’s theorem optimal controls in the class of essentially bounded measurable controls exist in problem (2.51)(2.57) for any Q_0,Q_1 \in G.

2.8.3. Extremals

Consider the Hamiltonians

\begin{equation*} h_i(\lambda)=\langle \lambda, e_i \rangle, \qquad i=1,2, \end{equation*} \notag
and
\begin{equation*} H_i(\lambda)=\langle \lambda, V_i \rangle, \qquad i=1,2,3, \end{equation*} \notag
which are linear on fibres of T^*G.

Abnormal trajectories. Constant-velocity abnormal trajectories have the form

\begin{equation*} \begin{gathered} \, x_t=u_1 t, \qquad y_t=u_2 t, \\ R_t=\exp(t(u_2 A_1-u_1 A_2)). \end{gathered} \end{equation*} \notag
They are non-strictly abnormal. In the abnormal case the sphere rolls uniformly along a straight line.

The normal Hamiltonian system. In the normal case the Hamiltonian system with Hamiltonian

\begin{equation*} H=\frac{1}{2}((h_1-H_2)^2+(h_2+H_1)^2) \end{equation*} \notag
is expressed in coordinates as follows:
\begin{equation} \dot h_1 =\dot h_2=0, \end{equation} \tag{2.61}
\begin{equation} \dot H_1 =(h_1-H_2)H_3, \end{equation} \tag{2.62}
\begin{equation} \dot H_2 =(h_2+H_1) H_3, \end{equation} \tag{2.63}
\begin{equation} \dot H_3 =- h_1 H_1-h_2 H_2, \end{equation} \tag{2.64}
\begin{equation} \dot Q =(h_1-H_2) X_1+(h_2+H_1) X_2. \end{equation} \tag{2.65}
As always in sub-Riemannian problems, we can limit ourselves to geodesics of unit velocity, that is, to extremal trajectories such that H \equiv 1/2 on them. Under this condition, in the adjoint space it is convenient to go over from the variables (h_1,h_2,H_1,H_2,H_3) to new variables (r,\alpha,\theta,c):
\begin{equation} h_1=r \cos \alpha, \qquad h_2=r \sin \alpha, \end{equation} \tag{2.66}
\begin{equation} h_1-H_2=\cos(\theta+\alpha), \qquad h_2+H_1=\sin (\theta+\alpha), \end{equation} \tag{2.67}
\begin{equation} c=H_3. \nonumber \end{equation} \notag
Then the Hamiltonian system for normal extremals (2.61)(2.65) takes the following form:
\begin{equation} \dot \theta =c, \end{equation} \tag{2.68}
\begin{equation} \dot c =-r \sin \theta, \end{equation} \tag{2.69}
\begin{equation} \dot \alpha =\dot r=0, \end{equation} \tag{2.70}
\begin{equation} \dot x =\cos(\theta+\alpha), \end{equation} \tag{2.71}
\begin{equation} \dot y =\sin(\theta+\alpha), \end{equation} \tag{2.72}
\begin{equation} \dot R =R \Omega, \qquad \Omega=\sin(\theta+\alpha) A_1-\cos(\theta+\alpha) A_2. \end{equation} \tag{2.73}
The family of normal extremals \lambda_t is parametrized by the cylinder C of initial points \lambda=\lambda_t\big|_{t=0}:
\begin{equation*} \begin{aligned} \, C &= \biggl\{\lambda \in\mathfrak{g}^* \mid H(\lambda)=\frac{1}{2}\biggr\} \\ & \cong \{(h_1, h_2, H_1, H_2, H_3) \in \mathbb{R}^5 \mid (h_1-H_2)^2+(h_2+H_1)^2=1\} \\ & \cong \{(\theta, c, \alpha, r) \mid \theta \in S^1, \ c \in \mathbb{R}, \ \alpha \in S^1, \ r \geqslant 0\}. \end{aligned} \end{equation*} \notag
The exponential map is defined by
\begin{equation*} \begin{gathered} \, \operatorname{Exp}(\lambda,t)=\pi \circ e^{t \vec H}(\lambda)=Q_t, \\ \operatorname{Exp}\colon N \to M, \qquad N=C \times \mathbb{R}_+=\{(\lambda,t) \mid \lambda \in C, \ t > 0\}. \end{gathered} \end{equation*} \notag

If r=0, then the elastica (x_t,y_t) is a straight line (for H_3=c=0) or a circle (for H_3=c \ne 0); we say that such elasticae are degenerate.

If r \ne 0, then the elastica (x_t,y_t) belongs to one of the four classes depending on the full energy E=c^2/2-r\cos \theta of the pendulum (2.68), (2.69) (see § 2.6):

We say that elasticae in classes 1)–3) are non-degenerate.

The symplectic foliation. On the Lie coalgebra \mathfrak{g}^* we have the Casimir functions h_1, h_2, and M=H_1^2+H_2^2+H_3^2. The symplectic foliations if formed by

The normal Hamiltonian system has the integrals h_1, h_2, M, and E=(M+h_1^2+h_2^2)/2-H; it is integrable by elliptic functions and integrals.

Geodesics of different types projecting onto Euler elasticae (x_t,y_t) correspond to different types of intersection of a level surface of the Hamiltonian \{H=\operatorname{const}\} with symplectic leaves.

Straightening coordinates. The cylinder C=\{\lambda \in \mathfrak{g}^* \mid H(\lambda)=1/2\} is stratified in accordance with types of motion of the pendulum (2.68), (2.69):

\begin{equation*} C=\bigsqcup_{i=1}^7 C_i, \end{equation*} \notag
where
\begin{equation*} \begin{gathered} \, C_1=\{\lambda \in C \mid E \in (-r, r), \ r > 0\}, \\ C_2=\{\lambda \in C \mid E \in (r,+\infty), \ r > 0\}, \\ C_3=\{\lambda \in C \mid E=r > 0, \ c \ne 0\}, \\ C_4=\{\lambda \in C \mid E=-r, \ r > 0\}, \\ C_5=\{\lambda \in C \mid E=r > 0, \ c=0\}, \\ C_6=\{\lambda \in C \mid r=0, \ c \ne 0\}, \end{gathered} \end{equation*} \notag
and
\begin{equation*} C_7=\{\lambda \in C \mid r=0, \ c=0\}. \end{equation*} \notag

In the domain \bigcup_{i=1}^3 C_i we can introduce coordinates (\varphi,k,\alpha,r) straightening the pendulum equations (2.68), (2.69).

If \lambda=(\theta,c,\alpha,r)\in C_1, then

\begin{equation*} \sin\frac{\theta}{2}=k\operatorname{sn}(\sqrt{r}\,\varphi,k), \quad \cos\frac{\theta}{2}=\operatorname{dn}(\sqrt{r}\,\varphi,k), \quad\text{and}\quad \frac{c}{2}=k \sqrt{r}\,\operatorname{cn}(\sqrt{r}\,\varphi, k), \end{equation*} \notag
here k=\sqrt{(E+r)/(2r)} \in (0, 1) and \sqrt{r}\,\varphi\,\operatorname{mod}{4K} \in [0,4K].

If \lambda=(\theta,c,\alpha,r)\in C_2, then

\begin{equation*} \sin\frac{\theta}{2}= \pm\operatorname{sn}\biggl(\frac{\sqrt{r}\,\varphi}{k}\,,k\biggr), \ \ \cos\frac{\theta}{2}= \operatorname{cn}\biggl(\frac{\sqrt{r}\,\varphi}{k}\,,k\biggr), \ \ \text{and}\ \ \frac{c}{2}=\pm \frac{\sqrt{r}}{k} \operatorname{dn}\biggl(\frac{\sqrt{r}\,\varphi}{k}\,,k\biggr), \end{equation*} \notag
where \pm=\operatorname{sign}c; here k=\sqrt{2r/(E+r)} \in (0,1) and \sqrt{r}\,\varphi\,\operatorname{mod}{2kK} \in [0,2kK].

If \lambda \in C_3, then

\begin{equation*} \sin\frac{\theta}{2}=\pm \tanh(\sqrt{r}\,\varphi), \quad \cos\frac{\theta}{2}=\frac{1}{\cosh(\sqrt{r}\,\varphi)}\,, \quad\text{and}\quad \frac{c}{2}=\pm \frac{\sqrt{r}}{\cosh(\sqrt{r} \varphi)}\,, \end{equation*} \notag
where \pm=\operatorname{sign} c; here k=1 and \varphi \in (-\infty,+\infty).

In the new variables the pendulum equations (2.68), (2.69) take the form

\begin{equation*} \dot \varphi=1, \quad \dot k=0, \quad \dot \alpha=0, \quad \dot r=0, \end{equation*} \notag
so that \varphi_t=\varphi+t and k,\alpha,r=\operatorname{const}.

Integrating the vertical subsystem of the Pontryagin maximum principle. If \lambda \in C_1, then

\begin{equation*} \sin\frac{\theta_t}{2}=k\operatorname{sn}(\sqrt{r}\,\varphi_t,k), \quad \cos\frac{\theta_t}{2}=\operatorname{dn}(\sqrt{r}\,\varphi_t,k), \quad\text{and}\quad \frac{c_t}{2}=k\sqrt{r}\,\operatorname{cn}(\sqrt{r}\,\varphi_t,k). \end{equation*} \notag
If \lambda \in C_2, then
\begin{equation*} \sin\frac{\theta_t}{2}= \pm \operatorname{sn}\biggl(\frac{\sqrt{r}\,\varphi_t}{k}\,,k\biggr), \quad \cos\frac{\theta_t}{2}= \operatorname{cn}\biggl(\frac{\sqrt{r}\,\varphi_t}{k}\,,k\biggr), \quad \frac{c_t}{2}=\pm \frac{\sqrt{r}}{k}\operatorname{dn} \biggl(\frac{\sqrt{r}\,\varphi_t}{k}\,,k\biggr), \end{equation*} \notag
where \pm=\operatorname{sign}c.

If \lambda \in C_3, then

\begin{equation*} \sin\frac{\theta_t}{2}= \pm \tanh(\sqrt{r}\,\varphi_t), \quad \cos\frac{\theta_t}{2}=\frac{1}{\cosh(\sqrt{r}\,\varphi_t)}\,, \quad \frac{c_t}{2}=\pm \frac{\sqrt{r}}{\cosh(\sqrt{r}\,\varphi_t)}\,, \end{equation*} \notag
where \pm=\operatorname{sign}c.

In the case when \lambda \in \bigcup_{i=4}^7 C_i system (2.68)(2.70) is integrated directly:

\begin{equation*} \begin{gathered} \, \theta_t \equiv 0,\quad c_t \equiv 0 \quad\text{for } \lambda \in C_4;\qquad \theta_t \equiv \pi,\quad c_t \equiv 0\quad\text{for } \lambda \in C_5; \\ \theta_t=c t+\theta,\quad c_t \equiv c \ne 0\quad\text{for } \lambda \in C_6;\qquad \theta_t \equiv \theta,\quad c_t \equiv 0\quad\text{for }\lambda \in C_7. \end{gathered} \end{equation*} \notag

Integrating the equations for x and y. To integrate equations (2.71), (2.72) with initial condition x_0=y_0=0 we use the symmetry of the problem and perform the rotation

\begin{equation*} x=\bar x\cos \alpha-\bar y \sin \alpha, \quad y=\bar x \sin \alpha+\bar y \cos \alpha. \end{equation*} \notag
In the new variables we obtain the Cauchy problem
\begin{equation} \dot{\bar x}_t=\cos \theta_t, \quad \dot{\bar y}_t=\sin \theta_t, \qquad \bar x_0= \bar y_0=0, \end{equation} \tag{2.74}
whose solutions can be parametrized as follows.

If \lambda \in C_1, then

\begin{equation*} \bar{x}_t=\frac{2(\operatorname{E}(\sqrt{r}\,\varphi_t)- \operatorname{E}(\sqrt{r}\,\varphi))-\sqrt{r}\,t}{\sqrt{r}} \end{equation*} \notag
and
\begin{equation*} \bar{y}_t=\frac{2k(\operatorname{cn}(\sqrt{r}\,\varphi)- \operatorname{cn}(\sqrt{r}\,\varphi_t))}{\sqrt{r}}\,. \end{equation*} \notag

If \lambda \in C_2, then

\begin{equation*} \bar{x}_t=\frac{2(\operatorname{E}(\sqrt{r}\,\varphi_t/k)- \operatorname{E}(\sqrt{r}\,\varphi/k)-(2-k^2)\sqrt{r}\,t/(2k))}{k\sqrt{r}} \end{equation*} \notag
and
\begin{equation*} \bar{y}_t=\pm\frac{2(\operatorname{dn}(\sqrt{r}\,\varphi/k)- \operatorname{dn}(\sqrt{r}\,\varphi_t/k))}{k\sqrt{r}}\,, \qquad \pm=\operatorname{sign}c. \end{equation*} \notag

If \lambda \in C_3, then

\begin{equation*} \bar{x}_t=\frac{2(\tanh(\sqrt{r}\,\varphi_t)-\tanh(\sqrt{r}\,\varphi))- \sqrt{r}\,t}{\sqrt{r}} \end{equation*} \notag
and
\begin{equation*} \bar{y}_t=\pm \frac{2(1/\cosh(\sqrt{r}\,\varphi)- 1/\cosh(\sqrt{r}\,\varphi_t))}{\sqrt{r}}\,, \qquad \pm=\operatorname{sign}c. \end{equation*} \notag

For \lambda \in \bigcup_{i=4}^7 C_i equations (2.74) are integrated directly:

\begin{equation*} \begin{gathered} \, \bar{x}_t=t,\quad \bar{y}_t=0\quad\text{for } \lambda \in C_4;\qquad \bar{x}_t=-t,\quad \bar{y}_t=0\quad\text{for } \lambda \in C_5; \\ \text{and}\quad \bar{x}_t=\frac{\sin(c t+\theta)-\sin \theta}{c}\,,\quad \bar{y}_t=\frac{\cos \theta-\cos(c t+\theta)}{c}\quad\text{for } \lambda \in C_6; \\ \bar{x}_t=t \cos \theta,\quad \bar{y}_t=t \sin \theta\quad\text{for } \lambda \in C_7. \end{gathered} \end{equation*} \notag

Integrating the equations for R. Assume that M=H_1^2+H_2^2+H_3^2 > 0. Then

\begin{equation} \begin{aligned} \, \nonumber R(t)&=\exp\bigl((\alpha-\varphi_3^0) A_3\bigr) \exp\bigl(-\varphi_2^0 A_2\bigr)\exp\bigl(\varphi_1(t) A_3\bigr) \\ &\qquad\times\exp\bigl(\varphi_2(t) A_2\bigr) \exp\bigl((\varphi_3(t)-\alpha)A_3\bigr), \end{aligned} \end{equation} \tag{2.75}
where the angles \varphi_i are defined from relations (2.76)(2.82) for r \ne 1 and from (2.79)(2.83) for r=1 (see below), and the angle \varphi_1 satisfies the initial condition \varphi_1^0=0.

The exponentials of matrices containing \varphi_2 and \varphi_3 and involved in (2.75) are expressed in terms of \cos \varphi_2, \sin \varphi_2, \cos \varphi_3, and \sin \varphi_3. These latter are expressed in terms of the variables c, \cos(\theta/2), and \sin(\theta/2) with the help of (2.76), (2.77), (2.79), (2.80). These variables were represented above as functions of elliptic coordinates or can be used directly. For r=1 we have \varphi_1(t)=\sqrt M\,t/2. We defer the integration of equation (2.78) for r \ne 1 to the next subsection.

In the case M=0 we have r=1, c=0, and \theta=0, so that u_1=\cos\alpha and u_2=\sin \alpha. Therefore, \Omega=u_2 A_1-u_1 A_2 \equiv \operatorname{const} and R(t)=e^{t\Omega}.

Integrating the equations for \varphi_1. Along normal geodesics, for r \ne 1 the angles \varphi_i satisfy the equalities

\begin{equation} \cos \varphi_2 =\frac{c}{\sqrt{M}}\,, \qquad \sin \varphi_2 =\pm \frac{\sqrt{M-c^2}}{\sqrt{M}}\,, \end{equation} \tag{2.76}
\begin{equation} \cos \varphi_3 =\mp\frac{\sin \theta}{\sqrt{M-c^2}}\,, \qquad \sin \varphi_3 =\pm\frac{r-\cos \theta}{\sqrt{M-c^2}}\,, \end{equation} \tag{2.77}
\begin{equation} \dot\varphi_1=\frac{\sqrt{M}(1-r \cos \theta)}{M-c^2}\,, \end{equation} \tag{2.78}
while for r=1 they satisfy
\begin{equation} \cos \varphi_2 =\frac{c}{\sqrt{M}}\,, \qquad \sin \varphi_2 =\pm \frac{2 \sin(\theta/2)}{\sqrt{M}}\,, \end{equation} \tag{2.79}
\begin{equation} \cos \varphi_3 =\mp \cos\frac{\theta}{2}\,, \qquad \sin \varphi_3 =\pm \sin\frac{\theta}{2}\,, \end{equation} \tag{2.80}
\begin{equation} \dot\varphi_1=\frac{\sqrt{M}}{2}\,. \end{equation} \tag{2.81}

We introduce an elliptic integral of the third kind in the following form:

\begin{equation} \Pi(n, u, k)=\int_0^u \frac{dt}{(1-n \sin^2 t)\sqrt{1-k^2 \sin^2 t}}=\int_0^{F(u,k)} \frac{dv}{1-n \operatorname{sn}^2 v}\,. \end{equation} \tag{2.82}

Let r \ne 1. If \lambda_1 \in C_1, then

\begin{equation} \varphi_1(t)=\frac{\sqrt{M}}{2}\,t+\frac{\sqrt{M}\,(1+r)}{2\,\sqrt{r}\,(1-r)} \bigl[\Pi(l,\operatorname{am}(\sqrt{r}\,(\varphi+t)),k)- \Pi(l,\operatorname{am}(\sqrt{r}\,\varphi),k)\bigr], \end{equation} \tag{2.83}
where l=-4 k^2 r/(1-r)^2.

If \lambda_1 \in C_2, then

\begin{equation*} \varphi_1(t)=\frac{\sqrt{M}}{2}\,t+\frac{\sqrt{M}\,k(1+r)}{2\,\sqrt{r}\,(1-r)}\, \biggl[\Pi\biggl(l,\operatorname{am} \biggl(\frac{\sqrt{r}\,(\varphi+t)}{k}\biggr),k\biggr)- \Pi\biggl(l,\operatorname{am} \biggl(\frac{\sqrt{r}\,\varphi}{k}\biggr),k\biggr)\biggr], \end{equation*} \notag
where l=-4r/(1-r)^2.

If \lambda_1 \in C_3, then

\begin{equation*} \varphi_1(t)=\frac{\sqrt{M}}{2}\,t+\frac{\sqrt{M}\,k(1-r^2)}{8 r^{3/2}} \bigl[I(\sqrt{r}\,(\varphi+t),a)-I(\sqrt{r}\,\varphi,a)\bigr], \end{equation*} \notag
and
\begin{equation*} I(v,a)=\int_0^v\frac{dt}{a^2+\tanh^2t}= \frac{a t-\arctan a+\arctan (e^t(a^2\cosh t+\sinh t)/a)}{a+a^3}\,, \end{equation*} \notag
where a=(1-r)/(2\,\sqrt{r}\,).

If \lambda_1 \in C_6, then \varphi_1(t)=\sqrt{1+c^2}\, t.

If \lambda \in C_4 \cup C_5 \cup C_7, then

\begin{equation*} \theta_t \equiv \operatorname{const}=\theta,\quad \Omega=\sin(\alpha+\theta)A_1-\cos(\alpha+\theta) A_2 \equiv \operatorname{const},\quad\text{and}\quad R(t)=e^{t\Omega}. \end{equation*} \notag

The control system in terms of quaternions. To describe the orientation of the rolling sphere it is convenient to use quaternions along with the rotation matrix R.

Let

\begin{equation*} \mathbb{H}=\{q=q_0+iq_1+j q_2+k q_3 \mid q_0,\dots,q_3 \in \mathbb{R}\} \end{equation*} \notag
be the algebra of quaternions, let S^3=\{q \in \mathbb{H} \mid |q|^2=q_0^2+q_1^2+q_2^2+q_3^2=1\} be the unit sphere, and
\begin{equation*} I=\{q \in \mathbb{H} \mid \operatorname{Re}q=q_0=0\} \end{equation*} \notag
be the subspace of purely imaginary quaternions. A quaternion q \in S^3 defines a rotation of the Euclidean space I:
\begin{equation*} q \in S^3 \quad\Longrightarrow \quad R_q(a)=q a q^{-1}, \quad a \in I, \quad R_q \in \operatorname{SO}(3)\cong \operatorname{SO}(I). \end{equation*} \notag

The correspondence between the quaternions q=q_0+i q_1+j q_2+k q_3 \in S^3 and the matrices R \in \operatorname{SO}(3) looks as follows:

\begin{equation} R=\begin{pmatrix} q_0^2+q_1^2-q_2^2-q_3^2 & 2 q_1 q_2-2 q_0 q_3& 2 q_0 q_2 + 2 q_1 q_3 \\ 2 q_1 q_2+2 q_0 q_3 &q_0^2-q_1^2+q_2^2-q_3^2 & -2 q_0q_1+2 q_2 q_3 \\ -2 q_0 q_2+2 q_1 q_3 & 2 q_0 q_1+2 q_2 q_3 & q_0^2-q_1^2 - q_2^2+q_3^2 \end{pmatrix}. \end{equation} \tag{2.84}

In terms of quaternions the control system (2.47) takes the following form:

\begin{equation} \begin{cases} \dot{q}_0=(q_2 u_1-q_1 u_2)/2, \\ \dot{q}_1=(q_3 u_1+q_0 u_2)/2, \\ \dot{q}_2=(-q_0 u_1+q_3 u_2)/2, \\ \dot{q}_3=(-q_1 u_1-q_2 u_2)/2, \end{cases}\qquad q=q_0+i q_1+j q_2+k q_3 \in S^3, \quad (u_1,u_2) \in \mathbb{R}^2. \end{equation} \tag{2.85}

The control system on \mathbb{R}^2\times\operatorname{SO}(3) (2.46), (2.47) with initial condition g(0)=\operatorname{Id} lifts to \mathbb{R}^2\times S^3 as a system (2.46), (2.85) with initial conditions (x,y)(0)=(0,0) and q(0)=1.

2.8.4. Symmetries

Symmetries of the family of extremal trajectories. The rotations of elasticae (x_s,y_s) around the origin in the (x,y)-plane generate a one- parameter group of symmetries of trajectories of the Hamiltonian system (2.68)(2.73)

\begin{equation*} \{\Phi^{\beta} \mid \beta \in S^1 \}, \end{equation*} \notag
where the rotation \Phi^{\beta} is defined as follows:
\begin{equation} \Phi^{\beta}\colon\{\lambda_s \mid s \in [0,t]\}\to \{\lambda_s^{\beta} \mid s \in [0,t]\}, \end{equation} \tag{2.86}
where
\begin{equation} \lambda_s=(\theta_s, c_s, \alpha, r, Q_s), \qquad Q_s=(x_s, y_s, R_s), \end{equation} \tag{2.87}
\begin{equation} \lambda_s^{\beta}= (\theta_s^{\beta},c_s^{\beta},\alpha^{\beta},r,Q_s^{\beta}),\qquad Q_s^{\beta}=(x_s^{\beta},y_s^{\beta},R_s^{\beta}), \end{equation} \tag{2.88}
\begin{equation} \theta_s^{\beta}=\theta_s, \qquad c_s^{\beta}=c_s, \qquad \alpha^{\beta}=\alpha+\beta, \end{equation} \tag{2.89}
\begin{equation} \begin{pmatrix} x_s^{\beta} \\ y_s^{\beta}\end{pmatrix}= \begin{pmatrix} \cos \beta &-\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} x_s \\ y_s\end{pmatrix}, \end{equation} \tag{2.90}
\begin{equation} R_s^{\beta}=e^{\beta A_3} R_s e^{-\beta A_3}. \end{equation} \tag{2.91}

Proposition 2.8. If \{\lambda_s \mid s \in [0,t]\} is a trajectory of system (2.68)(2.73), then for each \beta \in S^1 the curve \{\lambda_s^{\beta} \mid s \in [0,t]\} is a trajectory of this system too.

The reflections of trajectories (\theta_s,c_s) of the pendulum (2.68), (2.69) in the \theta- and c-coordinate axes and in the origin extend to discrete symmetries \varepsilon^1, \varepsilon^2, and \varepsilon^3 of the family of trajectories of system (2.68)(2.73):

\begin{equation*} \begin{gathered} \, \varepsilon^i\colon\{\lambda_s \mid s \in [0,t]\}\to \{\lambda_s^{i} \mid s \in [0,t]\}, \qquad i=1,2,3, \\ \begin{alignedat}{2} \lambda_s&=(\theta_s, c_s, \alpha, r, Q_s), &\qquad Q_s&=(x_s, y_s, R_s), \\ \lambda_s^{i}&=(\theta_s^{i}, c_s^{i}, \alpha^{i}, r, Q_s^{i}), &\qquad Q_s^{i}&=(x_s^{i}, y_s^{i}, R_s^{i}). \end{alignedat} \end{gathered} \end{equation*} \notag

The reflection of trajectories (\theta_s,c_s) of the pendulum (2.68), (2.69) in the \theta-axis corresponds to a discrete symmetry \varepsilon^1 of the family of extremal trajectories:

\begin{equation*} \begin{gathered} \, \theta_s^{1}=\theta_{t-s}, \qquad c_s^{1}=-c_{t-s}, \qquad \alpha^{1}=\alpha+\pi, \\ x_s^1=x_{t-s}-x_t, \qquad y_s^1=y_{t-s}-y_t, \\ R_s^{1}=(R_t)^{-1} R_{t-s}, \qquad \Omega_s^{1}=-\Omega_{t-s}. \end{gathered} \end{equation*} \notag

The reflection of trajectories \theta_s,c_s) of the pendulum in the c-axis generates a symmetry \varepsilon^2 of extremal trajectories:

\begin{equation*} \begin{gathered} \, \theta_s^{2}=-\theta_{t-s}, \qquad c_s^{2}=c_{t-s}, \qquad \alpha^{2}=\pi-\alpha, \\ x_s^2=x_{t-s}-x_t, \qquad y_s^2=y_t-y_{t-s}, \\ R_s^{2}=I_2 (R_t)^{-1} R_{t-s} I_2, \qquad \Omega_s^{2}=- I_2 \Omega_{t-s} I_2, \\ I_2=I_2^{-1}=e^{\pi A_2}=\begin{pmatrix} - 1 & 0 & \hphantom{-}0 \\ \hphantom{-}0 & 1 & \hphantom{-}0 \\ \hphantom{-}0 & 0 & -1 \end{pmatrix}. \end{gathered} \end{equation*} \notag

The reflection of trajectories (\theta_s,c_s) of the pendulum in the origin (\theta,c)=(0,0) extends to a symmetry \varepsilon^3 of extremal trajectories:

\begin{equation*} \begin{gathered} \, \theta_s^{3}=-\theta_{s}, \qquad c_s^{3}=-c_{s}, \qquad \alpha^{3}=- \alpha, \\ x_s^3=x_{s}, \qquad y_s^3=- y_{s}, \\ R_s^{3}=I_2 R_{s} I_2, \qquad \Omega_s^{3}=I_2 \Omega_{s} I_2. \end{gathered} \end{equation*} \notag

Proposition 2.9. If \{\lambda_s \mid s \in [0,t]\} is a trajectory of system (2.68)(2.73), then the curves \{\lambda_s^{i} \mid s \in [0,t]\}, i=1,2,3, are also trajectories of these system.

Symmetries of the exponential map. The actions of rotations \Phi^\beta and reflections \varepsilon^i on the source space and target space of the exponential map are defined so as to commute with the action of the exponential map.

Rotations \Phi^\beta\colon\lambda\to\lambda^{\beta} (2.86)(2.91) are symmetries of the Hamiltonian system, so their actions on T^*G decompose in a natural way into a direct sum of actions on N=\mathfrak{g}^* \times \mathbb{R}_+ (on points (\lambda,t), where \lambda is the initial point of the extremal) and on G (on the terminal points Q_t of the corresponding extremal trajectories):

\begin{equation*} \begin{gathered} \, \Phi^\beta\colon N \to N, \qquad (\lambda,t) \mapsto (\lambda^{\beta},t), \\ \lambda=(\theta,c,\alpha,r), \qquad \lambda^{\beta}=(\theta,c,\alpha^{\beta},r),\qquad \alpha^{\beta}=\alpha+\beta, \end{gathered} \end{equation*} \notag
and
\begin{equation*} \begin{gathered} \, \Phi^\beta\colon G\to G, \qquad Q \mapsto Q^{\beta}, \\ Q=(x, y, R), \qquad Q^{\beta}=(x^{\beta}, y^{\beta}, R^{\beta}), \\ \begin{pmatrix} x^{\beta} \\ y^{\beta}\end{pmatrix}=\begin{pmatrix} \cos \beta &-\sin \beta \\ \sin \beta & \hphantom{-}\cos \beta \end{pmatrix} \begin{pmatrix} x \\ y\end{pmatrix},\qquad R^{\beta}=e^{\beta A_3} R e^{-\beta A_3}. \end{gathered} \end{equation*} \notag

The action of the reflections \varepsilon^i on N is defined by their restrictions to the vertical components of extremal trajectories at the initial moment of time s=0:

\begin{equation*} \begin{gathered} \, \varepsilon^i\colon N\to N, \quad (\lambda, t) \mapsto (\lambda^{i}, t), \qquad i=1, 2, 3, \\ \lambda=(\theta, c, \alpha, r), \qquad \lambda^{i}=(\theta^i, c^i, \alpha^{i}, r), \end{gathered} \end{equation*} \notag
where \lambda=\lambda_s\big|_{s=0} and \lambda^i=\lambda_s^i\big|_{s=0}. The explicit expressions for the actions of the \varepsilon^i on N are as follows:
\begin{equation*} \begin{aligned} \, \varepsilon^1\colon(\theta,c,\alpha,r,t)\to(\theta^1,c^1,\alpha^1,r,t)&= (\theta_t,-c_t,\alpha+\pi,r,t), \\ \varepsilon^2\colon(\theta,c,\alpha,r,t)\to(\theta^2,c^2,\alpha^2,r,t)&= (-\theta_t, c_t, \pi-\alpha, r, t), \\ \varepsilon^3\colon(\theta,c,\alpha,r,t)\to(\theta^3,c^3,\alpha^3,r,t)&= (-\theta, -c, -\alpha, r, t). \end{aligned} \end{equation*} \notag

The action of reflections on G is determined by their action on the extremal trajectories at the terminal moment of time s=t:

\begin{equation*} \begin{gathered} \, \varepsilon^i\colon G\to G, \quad Q \mapsto Q^{i}, \qquad i=1,2,3, \\ Q=(x,y,R), \qquad Q^i=(x^i,y^i,R^i), \end{gathered} \end{equation*} \notag
where Q=Q_s\big|_{s=t} and Q^i=Q_s^i\big|_{s=t}. The explicit formulae are
\begin{equation*} \begin{aligned} \, \varepsilon^1\colon(x, y, R)\to(x^1, y^1, R^1)&=(-x, -y, (R)^{-1}), \\ \varepsilon^2\colon(x, y, R)\to(x^2, y^2, R^2)&=(-x, y, I_2 (R)^{-1}I_2), \\ \varepsilon^3\colon(x, y, R)\to(x^3, y^3, R^3)&=(x, -y, I_2 R I_2). \end{aligned} \end{equation*} \notag

Thus we have defined the actions of rotations and reflections on the target space of the exponential map:

\begin{equation} \Phi^\beta,\varepsilon^i \colon N \to N, \qquad (\lambda,t) \mapsto (\lambda^{\beta},t),(\lambda^i,t), \end{equation} \tag{2.92}
\begin{equation} \Phi^\beta,\varepsilon^i \colon G \to G, \qquad Q \mapsto Q^{\beta},Q^i. \end{equation} \tag{2.93}
It is essential that the image Q^i=\varepsilon^i(Q) depends only on the preimage Q, rather than on the moment of time t.

Proposition 2.10. The maps \Phi^\beta and \varepsilon^i are symmetries of the exponential map.

Consider the group of symmetries of the exponential map generated by the rotations and reflections:

\begin{equation*} \operatorname{Sym}= \langle \Phi^\beta,\varepsilon^1,\varepsilon^2,\varepsilon^3 \rangle. \end{equation*} \notag
The multiplication table in this group is as follows:

\cdot \, \circ \, \cdot\varepsilon^1\varepsilon^2\varepsilon^3\Phi^\beta
\varepsilon^1\operatorname{Id}\varepsilon^3\varepsilon^2\Phi^\beta \circ \varepsilon^1
\varepsilon^2\varepsilon^3\operatorname{Id}\varepsilon^1\Phi^{-\beta} \circ \varepsilon^2
\varepsilon^3\varepsilon^2\varepsilon^1\operatorname{Id}\Phi^{-\beta} \circ \varepsilon^3
\Phi^{\gamma}\varepsilon^1 \circ \Phi^{\gamma}\varepsilon^2 \circ \Phi^{-\gamma}\varepsilon^3 \circ \Phi^{-\gamma}\Phi^{\beta+\gamma}

Hence we obtain an explicit description of the symmetry group of the exponential map:

\begin{equation*} \operatorname{Sym}=\{\Phi^\beta,\Phi^\beta \circ \varepsilon^i \mid \beta \in S^1, \ i=1,2,3\} \cong \operatorname{SO}(2)\times (\mathbb{Z}_2\times\mathbb{Z}_2). \end{equation*} \notag

The Maxwell set corresponding to the group \langle \varepsilon^i,\Phi^\beta\rangle, i=1,2,3, is defined by

\begin{equation*} \begin{aligned} \, \operatorname{MAX}^i=\bigl\{(\lambda,t)\in N\mid \exists\beta \in S^1&\colon (\tilde\lambda,t)=\varepsilon^i \circ \Phi^\beta(\lambda,t), \\ &\quad\operatorname{Exp}(\lambda, s) \not\equiv \operatorname{Exp}(\tilde\lambda, s), \ \operatorname{Exp}(\lambda,t)= \operatorname{Exp}(\tilde \lambda,t)\bigr\}. \end{aligned} \end{equation*} \notag

2.8.5. Conditions for optimality

Theorem 2.36. Let t > 0, and let Q_s=(x_s, y_s, R_s)=\operatorname{Exp}(\lambda,s) be an extremal trajectory such that

Then (\lambda,t) \in \operatorname{MAX}^1, so that for no t_1 > t is the trajectory Q_s, s \in [0,t_1], optimal.

Theorem 2.37. Let t > 0, and let Q_s=(x_s,y_s,R_s)=\operatorname{Exp}(\lambda,s) be an extremal trajectory such that

Then (\lambda,t) \in \operatorname{MAX}^2, so that for no t_1 > t is the trajectory Q_s, s \in [0, t_1], optimal.

Theorem 2.38. Let t > 0, and let Q_s=(x_s, y_s, R_s)=\operatorname{Exp}(\lambda,s) be an optimal trajectory such that

Then (\lambda,t) \in \operatorname{MAX}^3, so that for no t_1 > t is the trajectory Q_s, s \in [0,t_1], optimal.

Remark 2.2. Bearing in mind that for each quaternion q=q_0+iq_1+jq_2+kq_3 \in S^3 the corresponding motion R_q\colon \mathbb{R}^3 \to \mathbb{R}^3 is a rotation about the vector (q_1,q_2,q_3) \in\mathbb{R}^3, we can give the following geometric interpretation of conditions (1) in Theorems 2.362.38.

1. Condition (1) in Theorem 2.36 means that the rotation R_t of the sphere is a rotation about some horizontal axis.

2. Condition (1) in Theorem 2.37 means that R_t is a rotation about some axis orthogonal to the displacement vector of the point of contact of the sphere and the plane (x_t,y_t,0).

3. Condition (1) in Theorem 2.38 means that R_t is a rotation about the horizontal axis orthogonal to the vector (x_t,y_t,0), or the rotation through \pi about an axis lying in the vertical plane containing (x_t,y_t,0).

2.8.6. Bibliographic comments

Subsection 2.8.1 is based on [29], [56], [83], and [86], § 2.8.2 is based on [132], § 2.8.3 on [114] and [132], and § 2.8.4 on [132].

The problem of rolling a ball over a plane without twisting or slipping was also considered in [2] and [88].

2.9. The sub-Riemannian problem on the Engel group

2.9.1. The problem statement

The geometric setting. Fix two points a_0,a_1 \in \mathbb{R}^2 on the plane which are connected by a curve \gamma_0 \subset \mathbb{R}^2. Also fix S \in \mathbb{R} and a line L \subset \mathbb{R}^2. The problem consists in joining a_0 with a_1 by a shortest curve \gamma \subset \mathbb{R}^2 such that \gamma_0 and \gamma bound a plane domain with algebraic area S whose centre of mass lies on L. Thus this is a generalization (a sophistication) of the Dido problem (see [143] and [157]).

The optimal control problem. The above geometric problem can also be formulated as an optimal control problem:

\begin{equation} \dot{g}=u_1 X_1(g)+u_2 X_2(g), \quad g=(x, y, z, v) \in \mathbb{R}^4, \end{equation} \tag{2.94}
\begin{equation} g(0)=g_0, \quad g(t_1)=g_1, \end{equation} \tag{2.95}
\begin{equation} l=\int_0^{t_1}\sqrt{u_1^2+u_2^2}\,\,dt \to \min, \end{equation} \tag{2.96}
\begin{equation} X_1=\frac{\partial}{\partial x}- \frac{y}{2}\,\frac{\partial}{\partial z}\,, \quad X_2=\frac{\partial}{\partial y}+ \frac{x}{2}\,\frac{\partial}{\partial z}+ \frac{x^2+y^2}{2}\,\frac{\partial}{\partial v}\,. \end{equation} \tag{2.97}
This is a sub-Riemannian problem for the sub-Riemannian structure on \mathbb{R}^4 defined by the vector fields X_1 and X_2 treated as an orthonormal frame.

The Engel algebra and Engel group. The Engel algebra is the Lie algebra \mathfrak{g}, with basis (X_1,\dots,X_4) such that the non-trivial commutators of its elements are

\begin{equation*} [X_1, X_2]=X_3\quad\text{and} \quad [X_1, X_3]=X_4 \end{equation*} \notag
(see Fig. 34).

The Engel algebra is a nilpotent Lie algebra with grading:

\begin{equation*} \mathfrak{g}=\mathfrak{g}^{(1)} \oplus\mathfrak{g}^{(2)} \oplus \mathfrak{g}^{(3)}, \end{equation*} \notag
where
\begin{equation*} \mathfrak{g}^{(1)}=\operatorname{span}(X_1,X_2),\quad \mathfrak{g}^{(2)}=\mathbb{R}X_3,\quad \mathfrak{g}^{(3)}=\mathbb{R} X_4,\qquad [\mathfrak{g}^{(1)},\mathfrak{g}^{(i)}]=\mathfrak{g}^{(i+1)}, \end{equation*} \notag
and \mathfrak{g}^{(4)}=\{0\}, so it is a Carnot algebra. The corresponding connected and simply connected Lie group G is called the Engel group.

The Engel group has a linear representation as

\begin{equation*} \left\{\begin{pmatrix} 1 & b & c & d \\ 0 & 1 & a & a^2/2\\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{pmatrix}\,\Bigg|\, a,b,c,d \in \mathbb{R}\right\}. \end{equation*} \notag
In \mathbb{R}^4_{x,y,z,v} we introduce multiplication by
\begin{equation*} \begin{aligned} \, \begin{pmatrix} x_1\\ y_1\\ z_1\\ v_1 \end{pmatrix} \cdot \begin{pmatrix} x_2\\ y_2\\ z_2\\ v_2 \end{pmatrix}=\begin{pmatrix} x_1+x_2\\ y_1+y_2\\ z_1+z_2+\dfrac{x_1 y_2-x_2 y_1}{2}\\ v_1+v_2+\dfrac{y_1y_2(y_1+y_2)}{2}+x_1z_2+\dfrac{x_1y_2(x_1+x_2)}{2} \end{pmatrix}, \end{aligned} \end{equation*} \notag
which makes of it the Engel group: G \cong \mathbb{R}^4_{x,y,z,v} so that the fields (2.97) become left-invariant fields on this group. Thus, (2.94)(2.96) is a left-invariant sub- Riemannian problem on the Engel group. Hence we can assume that the reference point in (2.95) is the identity element of the Engel group: g_0=\operatorname{Id}=(0,0,0,0).

All completely non-holonomic left-invariant sub-Riemannian problems of rank 2 on the Engel group are transformed into one another by isomorphisms of this group [124].

Special features of the problem. The sub-Riemannian problem on the Engel group is a simplest left-invariant sub-Riemannian problem, which has the following properties:

This problem presents a nilpotent approximation to each sub-Riemannian problem of Engel type (that is, with growth vector (2,3,4): see [45] and [143]) and, in particular, to a mobile robot with trailer.

2.9.2. Symmetries of the distribution and sub-Riemannian structure

Theorem 2.39. The Lie algebra of infinitesimal symmetries of the distribution \operatorname{span}(X_1,X_2) on the Engel group is parametrized by the smooth functions on this group that are constant along the field X_2.

Theorem 2.40. The Lie algebra of infinitesimal symmetries of the nilpotent sub- Riemannian structure on the Engel group is isomorphic to the Engel algebra of right-invariant vector field on this group.

2.9.3. Geodesics

Optimal trajectories exist in problem (2.94)(2.96) as follows from the Rashevskii–Chow and Filippov theorems.

The Pontryagin maximum principle. From the problem of the minimization of length (2.96) we go over to the equivalent problem of the minimization of energy

\begin{equation} J=\frac{1}{2}\int_0^{t_1} (u_1^2+u_2^2)\,dt \to \min\!. \end{equation} \tag{2.98}

Consider the Hamiltonians h_i(\lambda)=\langle\lambda,X_i\rangle, i=1,\dots,4, which are constant on fibres of T^*G. Then the Pontryagin maximum principle for problem (2.94), (2.95), (2.98) assumes the following form:

\begin{equation*} \begin{gathered} \, \dot h_1=-u_2 h_3,\quad \dot h_2=u_1 h_3,\quad \dot h_3=u_1 h_4,\quad \dot h_4=0, \\ \dot{g}=u_1 X_1+u_2 X_2, \\ u_1 h_1+u_2 h_2+\frac{\nu}{2}(u_1^2+u_2^2) \to \max_{(u_1,u_2) \in \mathbb{R}^2}, \\ \nu \leqslant 0,\quad (h_1,\dots,h_4,\nu) \ne 0. \end{gathered} \end{equation*} \notag

Abnormal extremals. Abnormal extremals of constant velocity can be parametrized as follows:

\begin{equation} \begin{gathered} \, h_1=h_2=h_3=0, \quad h_4 \equiv \operatorname{const} \ne 0, \nonumber \\ u_1\equiv 0, \quad u_2\equiv \pm 1, \nonumber \\ x=z \equiv 0, \quad y=\pm t, \quad v=\pm \frac{t^3}{6}\,. \end{gathered} \end{equation} \tag{2.99}
Abnormal trajectories (2.99) are one-parameter subgroups g(t)=e^{\pm tX_2}. They project onto the (x,y)-plane as straight lines, so they are sub-Riemannian length minimizers. The abnormal set is a smooth one-dimensional manifold diffeomorphic to a line:
\begin{equation*} \operatorname{Abn}=\biggl\{g \in G \Bigm| x=z=v-\frac{y^3}{6}=0\biggr\}. \end{equation*} \notag

Normal extremals. Normal extremals are trajectories of the normal Hamiltonian system

\begin{equation} \begin{aligned} \, \dot{\lambda}=\vec{H}(\lambda), \quad \lambda \in T^*G, \end{aligned} \end{equation} \tag{2.100}
with Hamiltonian H=(h_1^2+h_2^2)/2. On the level surface \{H=1/2\} we introduce variables (\theta,c,\alpha):
\begin{equation*} h_1=-\sin\theta, \quad h_2=\cos\theta, \quad h_3=c, \quad h_4=\alpha. \end{equation*} \notag
Then the Hamiltonian system (2.100) takes the form
\begin{equation} \dot{\theta}=c, \quad \dot c=-\alpha\sin\theta, \quad \dot{\alpha}=0, \end{equation} \tag{2.101}
\begin{equation} \dot{g}=-\sin \theta\cdot X_1+\cos\theta\cdot X_2. \end{equation} \tag{2.102}
The vertical subsystem (2.101) is the equation of a pendulum in a gravity field with gravitational acceleration g=\alpha l, where l is the length of the pendulum. Thus, for \alpha> 0 (for \alpha < 0) the gravity force is directed upwards (downwards, respectively) relative to the axis from which we measure \theta, while for \alpha=0 the pendulum moves in zero gravity.

The projections of normal extremals onto the (x,y)-plane are Euler elasticae (see § 2.6).

Abnormal length minimizers satisfy the normal Hamiltonian system (2.101), (2.102) for \theta=\pi+2\pi n and c=0, so they are non-strictly abnormal.

The symplectic foliation and Casimir functions There exist two independent Casimir functions on the Lie coalgebra \mathfrak{g}^*:

\begin{equation*} \begin{aligned} \, h_4 \quad\text{and}\quad E=\frac{h_3^2}{2}-h_2 h_4, \end{aligned} \end{equation*} \notag
where E is the full energy of the pendulum (2.101).

The symplectic foliation \mathfrak{g}^* consists of

  • \bullet parabolic cylinders
    \begin{equation*} \{E=\operatorname{const}, \ h_4=\operatorname{const} \ne 0, \ h_3^2+h_4^2 \ne 0\}, \end{equation*} \notag
  • \bullet pairs of planes
    \begin{equation*} \{E=\operatorname{const}, \ h_4=0, \ h_3 \ne 0\}, \end{equation*} \notag
  • \bullet points
    \begin{equation*} \{h_i=\operatorname{const}, \ i=1,\dots,4, \ h_3^2+h_4^2=0\}. \end{equation*} \notag
Symplectic leaves are two- and zero-dimensional, so the vertical subsystem (2.101) is Liouville integrable. The phase portrait of the Hamiltonian system (2.100) on the cylinder C\cap \{h_4=\operatorname{const}\}, where C=\mathfrak{g}^* \cap \{H=1/2\}, is obtained as the intersections of this cylinder with level surfaces of the energy E.

A parametrization of normal geodesics. The family of normal extremals on the level surface \{H=1/2\} is parametrized by their initial points on the cylinder C.

Consider the stratification of C by the submanifolds corresponding to different types of trajectories of the pendulum (2.101):

\begin{equation*} C=\bigsqcup_{i=1}^7 C_i, \end{equation*} \notag
where
\begin{equation*} \begin{gathered} \, C_1=\{\lambda \in C \mid \alpha \ne 0, \ E\in(-|\alpha|,|\alpha|)\}, \\ C_2=\{\lambda \in C \mid \alpha \ne 0, \ E\in(|\alpha|,+\infty)\}, \\ C_3=\{\lambda \in C \mid \alpha \ne 0, \ E=|\alpha|, c \ne 0 \}, \\ C_4=\{\lambda \in C \mid \alpha \ne 0, \ E=-|\alpha|\}, \\ C_5=\{\lambda \in C \mid \alpha \ne 0, \ E=|\alpha|, c=0\}, \\ C_6=\{\lambda \in C \mid \alpha=0, \ c \ne 0\}, \end{gathered} \end{equation*} \notag
and
\begin{equation*} C_7=\{\lambda \in C \mid \alpha=c=0\}. \end{equation*} \notag
Next, the sets C_i, i=1,\dots,5, are partitioned into subsets depending on the sign of \alpha:
\begin{equation*} C_i^+=C_i \cap \{\alpha>0\}, \quad C_i^-=C_i \cap \{\alpha<0\}, \quad i\in\{1,\dots,5\}. \end{equation*} \notag

Moreover, the subsets C_6, C_2^{\pm}, and C_3^{\pm} fall into connected components depending on the sign of c:

\begin{equation*} \begin{alignedat}{2} C_{6+}&=C_6 \cap \{c>0\}, &\quad C_{6-}&=C_6 \cap \{c<0\}, \\ C_{i+}^{\pm}&=C_i^{\pm} \cap \{c>0\}, &\quad C_{i-}^{\pm}&=C_i^{\pm}\cap \{c<0\}, \qquad i\in\{2,3\}. \end{alignedat} \end{equation*} \notag

For the normalization of normal geodesics, on the strata C_1, C_2, and C_3 we introduce elliptic coordinates (\varphi,k,\alpha) such that the pendulum equation (2.101) straightens out in these coordinates.

In the domain C_1^+ we set

\begin{equation*} \begin{gathered} \, k=\sqrt{\frac{E+\alpha}{2 \alpha}}= \sqrt{\frac{c^2}{4\alpha}+\sin^2 \frac{\theta}{2}}\in (0,1), \\ \sin\frac{\theta}{2}=k\operatorname{sn}(\sqrt{\alpha}\,\varphi),\qquad \cos\frac{\theta}{2}=\operatorname{dn}(\sqrt{\alpha}\,\varphi), \\ \frac{c}{2}=k\sqrt{\alpha}\,\operatorname{cn}(\sqrt{\alpha}\,\varphi),\qquad \varphi \in [0,4K]. \end{gathered} \end{equation*} \notag

In the domain C_2^+ we set

\begin{equation*} \begin{gathered} \, k=\sqrt{\frac{2\alpha}{E+\alpha}}=\frac{1}{\sqrt{c^2/(4\alpha)+ \sin^2(\theta/2)}}\in (0,1), \\ \sin\frac{\theta}{2}=\operatorname{sign} c\cdot \operatorname{sn}\biggl(\frac{\sqrt{\alpha}\,\varphi}{k}\biggr),\qquad \cos\frac{\theta}{2}= \operatorname{cn}\biggl(\frac{\sqrt{\alpha}\,\varphi}{k}\biggr), \\ \frac{c}{2}=\operatorname{sign}c \cdot \frac{\sqrt{\alpha}}{k} \operatorname{dn}\biggl(\frac{\sqrt{\alpha}\,\varphi}{k}\biggr), \qquad \varphi \in [0,2kK], \\ \psi=\frac{\varphi}{k}\,. \end{gathered} \end{equation*} \notag

On the set C_3^+,

\begin{equation*} \begin{gathered} \, k=1,\\ \sin\frac{\theta}{2}=\operatorname{sign}c\cdot \tanh(\sqrt{\alpha}\,\varphi),\qquad \cos\frac{\theta}{2}=\frac{1}{\cosh(\sqrt{\alpha}\,\varphi)}\,, \\ \frac{c}{2}=\operatorname{sign} c \cdot \frac{\sqrt{\alpha}}{\cosh(\sqrt{\alpha}\,\varphi)}\,, \qquad \varphi \in (-\infty,+\infty). \end{gathered} \end{equation*} \notag

On C_1^-, C_2^-, and C_3^- we define the new coordinates as follows:

\begin{equation} \varphi(\theta,c,\alpha)=\varphi(\theta-\pi,c,-\alpha), \end{equation} \tag{2.103}
\begin{equation} k(\theta,c,\alpha)=k(\theta-\pi,c,-\alpha). \end{equation} \tag{2.104}

In the new variables the vertical subsystem (2.101) assumes the following form:

\begin{equation*} \dot{\varphi}=1, \qquad \dot{k}=0, \qquad \dot{\alpha}=0, \end{equation*} \notag
so it has the solutions
\begin{equation} \varphi_t=\varphi+t, \qquad k=\operatorname{const}, \qquad \alpha=\operatorname{const}. \end{equation} \tag{2.105}
The problem is invariant under left shifts on the Engel group, under the dilations
\begin{equation} \delta_s\colon (t,x,y,z,v) \mapsto (e^s t,e^s x,e^s y,e^{2s}z,e^{3s}v), \end{equation} \tag{2.106}
\begin{equation} (\theta,c,\alpha) \mapsto (\theta,e^{-s}c,e^{-2s}\alpha), \quad (\varphi,k,\alpha) \mapsto (e^s\varphi,k,e^{-2s}\alpha) \end{equation} \tag{2.107}
and under the reflections
\begin{equation*} \begin{gathered} \, (t,x,y,z,v) \mapsto (t,-x,-y,z,-v), \\ (\theta,c,\alpha) \mapsto (\theta-\pi,c,-\alpha), \quad (\varphi,k,\alpha) \mapsto (\varphi,k,-\alpha). \end{gathered} \end{equation*} \notag
Dilations define the flow of the vector field
\begin{equation*} Y=x\,\frac{\partial}{\partial x}+y\,\frac{\partial}{\partial y}+ 2z\,\frac{\partial}{\partial z}+3v\,\frac{\partial}{\partial v} \end{equation*} \notag
on the Engel group.

For \lambda=(\varphi,k,\alpha) \in \bigcup_{i=1}^3 C_i, and \alpha=1, geodesics can be parametrized as follows.

If \lambda \in C_1, then

\begin{equation} \begin{aligned} \, x_t&=2 k (\operatorname{cn} \varphi_t-\operatorname{cn} \varphi), \nonumber \\ y_t&=2 \bigl(\operatorname{E}(\varphi_t)-\operatorname{E}(\varphi)\bigr)-t, \nonumber \\ z_t&=2k\biggl(\operatorname{sn}\varphi_t\operatorname{dn}\varphi_t- \operatorname{sn}\varphi\operatorname{dn}\varphi- \frac{y_t}{2}(\operatorname{cn}\varphi_t+\operatorname{cn}\varphi)\biggr), \nonumber \\ v_t&=\frac{y_t^3}{6}+2 k^2 \operatorname{cn}^2 \varphi\cdot y_t- 4k^2\operatorname{cn}\varphi\cdot(\operatorname{sn}\varphi_t \operatorname{dn}\varphi_t-\operatorname{sn}\varphi\operatorname{dn}\varphi) \nonumber \\ &\qquad+2k^2\biggl(\frac{2}{3}\operatorname{cn}\varphi_t\operatorname{dn} \varphi_t \operatorname{sn}\varphi_t- \frac{2}{3} \operatorname{cn} \varphi \operatorname{dn} \varphi \operatorname{sn} \varphi+\frac{1-k^2}{3 k^2}\,t \nonumber \\ &\qquad+\frac{2 k^2 -1}{3 k^2}\bigl(\operatorname{E}(\varphi_t)- \operatorname{E}(\varphi)\bigr)\biggr). \end{aligned} \end{equation} \tag{2.108}

If \lambda \in C_2, then

\begin{equation} \begin{gathered} \, \begin{aligned} \, x_t&=\frac{2\operatorname{sign}c}{k}(\operatorname{dn}\psi_t- \operatorname{dn}\psi), \nonumber \\ y_t&=\frac{k^2-2}{k^2}\,t+\frac{2}{k}\bigl(\operatorname{E}(\psi_t)- \operatorname{E}(\psi)\bigr), \nonumber \\ z_t&=-\frac{x_t y_t}{2}-\frac{2\operatorname{sign}c\, \operatorname{dn}\psi}{k}\,y_t+2\operatorname{sign}c\, (\operatorname{cn}\psi_t\operatorname{sn}\psi_t- \operatorname{cn} \psi \operatorname{sn} \psi), \nonumber \\ v_t&=\frac{4}{k}\biggl(\!\frac{1}{3}\operatorname{cn}\psi_t \operatorname{dn} \psi_t \operatorname{sn} \psi_t -\frac{1}{3} \operatorname{cn} \psi \operatorname{dn} \psi \operatorname{sn} \psi-\frac{1-k^2}{3 k^3}\,t- \frac{k^2-2}{6 k^2}\bigl(\operatorname{E}(\psi_t)- \operatorname{E}(\psi)\bigr)\!\biggr) \nonumber \\ &\qquad+\frac{y_t^3}{6}+\frac{2y_t}{k^2}\operatorname{dn}^2\psi- \frac{4}{k}\operatorname{dn}\psi\bigl(\operatorname{cn}\psi_t \operatorname{sn}\psi_t-\operatorname{cn}\psi\operatorname{sn}\psi\bigr), \nonumber \end{aligned} \\ \psi=\frac{\varphi}{k}\,, \quad \psi_t=\psi+\frac{t}{k}\,. \end{gathered} \end{equation} \tag{2.109}

If \lambda \in C_3, then

\begin{equation} \begin{aligned} \, x_t&=2 \operatorname{sign}c\biggl(\frac{1}{\cosh\varphi_t}- \frac{1}{\cosh\varphi}\biggr), \nonumber \\ y_t&=2(\tanh \varphi_t-\tanh \varphi)-t , \nonumber \\ z_t&=-\frac{x_t y_t}{2}- \frac{2\operatorname{sign} c}{\cosh \varphi}\, y_t+ 2\operatorname{sign}c\biggl(\frac{\tanh\varphi_t}{\cosh\varphi_t}- \frac{\tanh\varphi}{\cosh\varphi}\biggr), \nonumber \\ v_t&=\frac{2}{3}\biggl(\tanh\varphi_t-\tanh\varphi+ 2\,\frac{\tanh\varphi_t}{\cosh^2\varphi_t}- 2\,\frac{\tanh\varphi}{\cosh^2\varphi}\biggr) \nonumber \\ &\qquad+\frac{y_t^3}{6}+\frac{2y_t}{\cosh^2\varphi}- \frac{4}{\cosh\varphi}\biggl(\frac{\tanh\varphi_t}{\cosh\varphi_t}- \frac{\tanh\varphi}{\cosh\varphi}\biggr). \end{aligned} \end{equation} \tag{2.110}
For arbitrary \lambda=(\varphi,k,\alpha) \in \bigcup_{i=1}^3 C_i a parametrization of geodesics can be obtained from the case \alpha=1 using dilations and reflections:
  • \bullet if \alpha > 0, then
    \begin{equation*} (x_t,y_t,z_t,v_t)(\varphi,k,\alpha)=\biggl(\frac{x_{t'}}{\alpha^{1/2}}\,, \frac{y_{t'}}{\alpha^{1/2}}\,,\frac{z_{t'}}{\alpha}\,, \frac{v_{t'}}{\alpha^{3/2}}\biggr)(\sqrt\alpha\,\varphi,k,1), \quad t'=t\sqrt\alpha\,; \end{equation*} \notag
  • \bullet if \alpha < 0, then
    \begin{equation*} (x_t,y_t,z_t,v_t)(\varphi,k,\alpha)=(-x_t,-y_t,z_t,-v_t)(\varphi,k,-\alpha). \end{equation*} \notag
In the remaining cases, when \lambda \in \bigcup_{i=4}^7C_i, geodesics are parametrized by elementary functions.

If \lambda \in C_4, then

\begin{equation*} x_t=0, \qquad y_t=t \operatorname{sign}\alpha, \qquad z_t=0, \qquad v_t=\frac{t^3}{6} \operatorname{sign} \alpha. \end{equation*} \notag

If \lambda \in C_5, then

\begin{equation*} x_t=0, \qquad y_t=- t \operatorname{sign} \alpha, \qquad z_t=0, \qquad v_t=-\frac{t^3}{6} \operatorname{sign} \alpha. \end{equation*} \notag

If \lambda \in C_6, then

\begin{equation*} \begin{gathered} \, x_t=\frac{\cos (c t+\theta)-\cos \theta}{c}\,,\qquad y_t=\frac{\sin(c t+\theta)-\sin \theta}{c}\,, \qquad z_t=\frac{ct-\sin(ct)}{2c^2}\,, \\ v_t=\frac{3\cos\theta-2ct\sin\theta- 4\cos(ct+\theta)+\cos(2ct+\theta)}{4c^3}\,. \end{gathered} \end{equation*} \notag

If \lambda \in C_7, then

\begin{equation*} x_t=-t\sin\theta, \qquad y_t=t\cos\theta, \qquad z_t=0, \qquad v_t=\frac{t^3}{6}\cos\theta. \end{equation*} \notag

The projections of geodesics onto the (x,y)-plane are Euler elasticae (see § 2.6), namely, inflectional ones for \lambda \in C_1, non-inflectional ones for \lambda \in C_2, critical ones for \lambda \in C_3, straight lines for \lambda \in C_4 \cup C_5 \cup C_7, and circles for \lambda \in C_6.

The family of all geodesics is parametrized by means of the exponential map

\begin{equation*} \operatorname{Exp} \colon N=C \times \mathbb{R}_+ \to M,\quad \operatorname{Exp}(\lambda,t)=g_t=(x_t,y_t,z_t,v_t). \end{equation*} \notag

2.9.4. Symmetries of the exponential map and the Maxwell time

The dilations (2.106), (2.107) form a one-parameter group of symmetries of the exponential map. It also has the discrete group of symmetries formed by reflections,

\begin{equation*} \operatorname{Sym}=\{\operatorname{Id},\varepsilon^1,\dots,\varepsilon^7\} \cong \mathbb{Z}_2\times\mathbb{Z}_2\times\mathbb{Z}_2. \end{equation*} \notag

Let \vec H_v=c\,\dfrac{\partial}{\partial\theta}- \alpha\sin\theta\,\dfrac{\partial}{\partial c}\in\operatorname{Vec}(C) be the vertical component of the normal Hamiltonian field \vec H. The maps \varepsilon^i\colon C \to C below preserve the direction field of the vector field \vec H_v:

\begin{equation*} \begin{aligned} \, \varepsilon^1\colon (\theta,c,\alpha) &\mapsto (\theta,-c,\alpha), \\ \varepsilon^2\colon (\theta,c,\alpha) &\mapsto (-\theta,c,\alpha), \\ \varepsilon^3\colon (\theta,c,\alpha) &\mapsto (-\theta,-c,\alpha), \\ \varepsilon^4\colon (\theta,c,\alpha) &\mapsto (\theta+\pi,c,-\alpha), \\ \varepsilon^5\colon (\theta,c,\alpha) &\mapsto (\theta+\pi,-c,-\alpha), \\ \varepsilon^6\colon (\theta,c,\alpha) &\mapsto (-\theta+\pi,c,-\alpha), \\ \varepsilon^7\colon (\theta,c,\alpha) &\mapsto (-\theta+\pi,-c,-\alpha). \end{aligned} \end{equation*} \notag
Namely, \varepsilon^i_*\vec H_v=\vec H_v for i=3,4,7 and \varepsilon^i_*\vec H_v=-\vec H_v for i=1,2,5,6. The actions of the reflections \varepsilon^i\colon C \to C extend to symmetries of the exponential map as follows.

The action \varepsilon^i\colon N \to N, N=C \times \mathbb{R}_{+}, is defined by

\begin{equation*} {\varepsilon}^i(\lambda,t)=\begin{cases} \bigl({\varepsilon}^i(\lambda),t\bigr) & \text{if}\ {\varepsilon}^i_* \vec{H}_v=\vec{H}_v, \\ \bigl({\varepsilon}^i \circ e^{t \vec{H}_v}(\lambda),t\bigr) & \text{if } \ {\varepsilon}^i_* \vec{H}_v=-\vec{H}_v. \end{cases} \end{equation*} \notag

The action \varepsilon^i\colon G \to G is defined by

\begin{equation*} \varepsilon^i(q)=\varepsilon^i(x,y,z,v)=g^i=(x^i,y^i,z^i,v^i), \end{equation*} \notag
where
\begin{equation*} \begin{aligned} \, (x^1, y^1, z^1, v^1)&=(x, y, -z, v-x z), \\ (x^2, y^2, z^2, v^2)&=(-x, y, z, v-x z), \\ (x^3, y^3, z^3, v^3)&=(-x, y, -z, v), \\ (x^4, y^4, z^4, v^4)&=(-x, -y, z, -v), \\ (x^5, y^5, z^5, v^5)&=(-x, -y, -z, -v+x z), \\ (x^6, y^6, z^6, v^6)&=(x, -y, z, -v+x z), \\ (x^7, y^7, z^7, v^7)&=(x, -y, -z, -v). \end{aligned} \end{equation*} \notag

Proposition 2.11. The group \operatorname{Sym} is a subgroup of the symmetry group of the exponential map.

Theorem 2.41. On almost all geodesics the first Maxwell time corresponding to the symmetry group \operatorname{Sym} can be expressed as follows:

\begin{equation} \lambda \in C_1 \quad\Longrightarrow\quad t_{\rm Max}^1= \frac{\min\bigl(2 p_z^1(k),4 K(k)\bigr)}{\sigma}\,, \end{equation} \tag{2.111}
\begin{equation} \lambda \in C_2 \quad\Longrightarrow\quad t_{\rm Max}^1= \frac{2kK(k)}{\sigma}\,, \end{equation} \tag{2.112}
\begin{equation} \lambda \in C_6 \quad\Longrightarrow\quad t_{\rm Max}^1=\frac{2\pi}{|c|}\,, \end{equation} \tag{2.113}
\begin{equation} \lambda \in C_3 \cup C_4 \cup C_5 \cup C_7 \quad\Longrightarrow\quad t_{\rm Max}^1=+\infty, \end{equation} \tag{2.114}
where \sigma=\sqrt{|\alpha|}, and p^1_z(k)\in \bigl(K(k),3K(k)\bigr) is the first positive zero of the function f_z(p,k)=\operatorname{dn} p \, \operatorname{sn}p+(p-2\operatorname{E}(p))\operatorname{cn}p.

Remark 2.3. On geodesics with first Maxwell time distinct from t_{\rm Max}^1, it is lager than this quantity, while t_{\rm Max}^1 is the first conjugate time.

Theorem 2.42. The function t_{\rm Max}^1\colon C \to (0,+\infty] has the following invariance properties:

(1) t_{\rm Max}^1(\lambda) depends only on E and |\alpha|;

(2) t_{\rm Max}^1(\lambda) in a first integral of the field \vec H_v;

(3) t_{\rm Max}^1(\lambda) is reflection invariant: if (\lambda,t) \in C\times \mathbb{R}_+, (\lambda^i, t)=\varepsilon^i(\lambda, t), then

\begin{equation*} t_{\rm Max}^1(\lambda^i)=t_{\rm Max}^1(\lambda); \end{equation*} \notag

(4) t_{\rm Max}^1(\lambda) is dilation homogeneous: if \lambda \in C and \lambda_s=\delta_s(\lambda) \in C, then

\begin{equation*} t_{\rm Max}^1(\lambda_s)=e^st_{\rm Max}^1(\lambda),\qquad s \in \mathbb{R}. \end{equation*} \notag

2.9.5. A lower bound for the conjugate time

Theorem 2.43. For each \lambda \in C

\begin{equation*} t_{\rm conj}^1(\lambda) \geqslant t_{\rm Max}^1(\lambda). \end{equation*} \notag

2.9.6. The diffeomorphism structure of the exponential map

Consider the following subset of the state space, which does not contain fixed points of the symmetries \varepsilon^1 and \varepsilon^2:

\begin{equation*} \widetilde G=\{g \in G \mid \varepsilon^1(g) \ne g \ne \varepsilon^2(g)\}= \{g \in G \mid xz \ne 0\}, \end{equation*} \notag
and consider its connected components
\begin{equation*} \begin{gathered} \, G_1=\{g \in G \mid x < 0, z > 0\}, \\ G_2=\{g \in G \mid x < 0, z < 0\}, \\ G_3=\{g \in G \mid x > 0, z < 0\}, \end{gathered} \end{equation*} \notag
and
\begin{equation*} G_4=\{g \in G \mid x > 0, z > 0\}. \end{equation*} \notag
Also consider the open dense subset of the space of potentially optimal geodesics
\begin{equation*} \widetilde{N}=\{(\lambda, t) \in N \mid t < t_{\rm Max}^1(\lambda), \ c_{t/2} \sin \theta_{t/2} \ne 0\} \end{equation*} \notag
and its connected components
\begin{equation*} \begin{gathered} \, D_1=\bigl\{(\lambda, t) \in N \mid t \in \bigl(0,t_{\rm Max}^1(\lambda)\bigr), \ \sin\theta_{t/2} > 0, \ c_{t/2} > 0\bigr\}, \\ D_2=\bigl\{(\lambda, t) \in N \mid t \in \bigl(0,t_{\rm Max}^1(\lambda)\bigr), \ \sin\theta_{t/2} > 0, \ c_{t/2} < 0\bigr\}, \\ D_3=\bigl\{(\lambda, t) \in N \mid t \in \bigl(0, t_{\rm Max}^1(\lambda)\bigr), \ \sin\theta_{t/2} < 0, \ c_{t/2} < 0\bigr\}, \end{gathered} \end{equation*} \notag
and
\begin{equation*} D_4=\bigl\{(\lambda, t) \in N \mid t \in \bigl(0, t_{\rm Max}^1(\lambda)\bigr), \ \sin\theta_{t/2} < 0, \ c_{t/2} > 0\bigr\}. \end{equation*} \notag

Theorem 2.44. The following maps are difeomorphisms:

\begin{equation*} \begin{aligned} \, \operatorname{Exp}\colon D_i &\to G_i, \quad i=1,\dots,4, \\ \operatorname{Exp}\colon \widetilde N &\to \widetilde G. \end{aligned} \end{equation*} \notag

2.9.7. The cut time

Theorem 2.45. For each \lambda \in C

\begin{equation*} t_{\rm cut}(\lambda)=t_{\rm Max}^1(\lambda). \end{equation*} \notag

2.9.8. The cut locus and its stratification

Theorem 2.46. The cut locus \operatorname{Cut} lies in the union of coordinate subspaces \{x=0\} and \{z=0\}. It is invariant under dilations and discrete symmetries:

\begin{equation*} e^{tY}(\operatorname{Cut})=\operatorname{Cut}, \quad t \in \mathbb{R};\qquad \varepsilon^i(\operatorname{Cut})=\operatorname{Cut}, \quad i=1,\dots,7. \end{equation*} \notag

Theorem 2.47. The cut locus has the stratification

\begin{equation*} \begin{aligned} \, \operatorname{Cut}&= (\mathcal{I}_{x+} \sqcup \mathcal{I}_{x-}) \sqcup (\mathcal{N}{x+} \sqcup \mathcal{N}{x-}) \sqcup (\mathcal{I}_{z+} \sqcup \mathcal{I}_{z-}) \\ &\qquad\sqcup (\mathcal{CI}_{x+}^{+} \sqcup \mathcal{CI}_{x+}^{-} \sqcup \mathcal{CI}_{x-}^{+}\sqcup \mathcal{CI}_{x-}^{-})\sqcup (\mathcal{CN}_{x+}^{+}\sqcup \mathcal{CN}_{x+}^{-} \sqcup \mathcal{CN}_{x-}^{+} \sqcup \mathcal{CN}_{x-}^{-}) \\ &\qquad\sqcup (\mathcal{CI}_{z+}^{+} \sqcup \mathcal{CI}_{z+}^{-} \sqcup \mathcal{CI}_{z-}^{+} \sqcup \mathcal{CI}_{z-}^{-}) \\ &\qquad\sqcup (\mathcal{E}_{+} \sqcup \mathcal{E}_{-}). \end{aligned} \end{equation*} \notag
The intersections of the cut locus with coordinate subspaces are stratified as follows:
\begin{equation*} \begin{aligned} \, \operatorname{Cut} \cap \{z=0\} &= (\mathcal{I}_{z+} \mathbin{\sqcup} \mathcal{I}_{z-}) \mathbin{\sqcup} (\mathcal{CI}_{z+}^{+} \mathbin{\sqcup} \mathcal{CI}_{z+}^{-} \mathbin{\sqcup} \mathcal{CI}_{z-}^{+} \mathbin{\sqcup} \mathcal{CI}_{z-}^{-}) \\ &\qquad\mathbin{\sqcup} (\mathcal{I}_{x+}^0 \mathbin{\sqcup} \mathcal{I}_{x-}^0)\mathbin{\sqcup} (\mathcal{E}_{+} \mathbin{\sqcup} \mathcal{E}_{-}), \\ \operatorname{Cut} \cap \{x=0\} &=(\mathcal{I}_{x+} \mathbin{\sqcup} \mathcal{I}_{x-}) \mathbin{\sqcup} (\mathcal{CI}_{x+}^{+} \mathbin{\sqcup} \mathcal{CI}_{x+}^{-} \mathbin{\sqcup} \mathcal{CI}_{x-}^{+} \mathbin{\sqcup} \mathcal{CI}_{x-}^{-}) \\ &\qquad\mathbin{\sqcup} (\mathcal{N}_{x+} \mathbin{\sqcup} \mathcal{N}_{x-})\mathbin{\sqcup} (\mathcal{CN}_{x+}^{+} \mathbin{\sqcup} \mathcal{CN}_{x+}^{-} \mathbin{\sqcup} \mathcal{CN}_{x-}^{+} \mathbin{\sqcup} \mathcal{CN}_{x-}^{-}) \\ &\qquad\mathbin{\sqcup} (\mathcal{I}_{z+}^0 \mathbin{\sqcup} \mathcal{I}_{z-}^0)\mathbin{\sqcup} (\mathcal{E}_{+} \mathbin{\sqcup} \mathcal{E}_{-}), \\ \operatorname{Cut} \cap \{x=z=0\} &= (\mathcal{I}_{z+}^0 \mathbin{\sqcup} \mathcal{I}_{z-}^0) \mathbin{\sqcup} (\mathcal{I}_{x+}^0 \mathbin{\sqcup} \mathcal{I}_{x-}^0) \mathbin{\sqcup} (\mathcal{E}_{+} \mathbin{\sqcup} \mathcal{E}_{-}). \end{aligned} \end{equation*} \notag
Here \mathcal{I}_{x\pm}^0 \subset \mathcal{I}_{x\pm}, \mathcal{I}_{z\pm}^0 \subset \mathcal{I}_{z\pm}, and, in addition,
\begin{equation*} \begin{gathered} \, \begin{aligned} \, \mathcal{I}_{z+} &= \bigl\{g \in G \mid z=0, \ y > Y_0^1 |x|, \ w < G_1(x,y)\bigr\} \simeq \mathbb{R}^3, \\ \mathcal{I}_{x+} &= \bigl\{g \in G \mid x=0, \ y > 0, \ w > G_2(z,y)\bigr\} \simeq \mathbb{R}^3, \\ \mathcal{N}{x\pm} &= \bigl\{g \in G \mid x=0, \ \operatorname{sign} z=\pm 1, \ -G_3(z,-y) < w < G_3(z,y)\bigr\} \simeq \mathbb{R}^3, \\ \mathcal{CI}_{z+}^{\pm} &= \bigl\{g \in G \mid z=0, \ y > Y_0^1 |x|, \ w=G_1(x,y), \operatorname{sign} x=\pm 1\bigr\} \simeq \mathbb{R}^2, \\ \mathcal{CI}_{x+}^{\pm} &= \bigl\{g \in G \mid z=0, \ y > 0, \ w=G_2(x,y), \operatorname{sign} z=\pm 1\bigr\} \simeq \mathbb{R}^2, \\ \mathcal{CN}_{x\pm}^{+} &= \bigl\{g \in G \mid x=0, \ \operatorname{sign} z =\pm 1, \ w=G_3(z,y)\bigr\} \simeq \mathbb{R}^2, \\ \mathcal{I}_{z\pm}^0 &= \bigl\{g \in G \mid x=z=0, \ y w < 0, \ \operatorname{sign} y=\pm 1 \bigr\} \simeq \mathbb{R}^2, \\ \mathcal{I}_{x\pm}^0 &= \bigl\{g \in G \mid x=z=0, \ y w > 0, \ \operatorname{sign} y=\pm 1 \bigr\} \simeq \mathbb{R}^2, \\ \mathcal{E}_{\pm} &= \bigl\{g \in G \mid x=y=z=0, \ \operatorname{sign} w=\pm 1 \bigr\} \simeq \mathbb{R}^1, \\ \end{aligned} \\ \begin{gathered} \, \mathcal{I}_{z-} = \varepsilon^4(\mathcal{I}_{z+}), \quad \mathcal{I}_{x-}=\varepsilon^4(\mathcal{I}_{z+}), \\ \mathcal{CI}_{z-}^{\pm}=\varepsilon^4(\mathcal{CI}_{z+}^{\pm}), \quad \mathcal{CI}_{x-}^{\pm}=\varepsilon^4(\mathcal{CI}_{x+}^{\pm}), \quad \mathcal{CN}_{x\pm}^{-}=\varepsilon^4(\mathcal{CN}_{x\pm}^{+}), \end{gathered} \end{gathered} \end{equation*} \notag
where Y_0^1 < 0 and the G_i, i=1,2,3, are certain smooth functions with the following properties:
\begin{equation*} \begin{alignedat}{4} G_1(0,y)&=0, &\qquad G_1(-x,y)&=G_1(x,y), &\qquad G_1(\rho x,\rho y)&=\rho^3 G_1(x,y),&\quad \rho&>0; \\ G_2(0,y)&=0, &\qquad G_2(-z,y)&=G_2(z,y),&\qquad G_2(\rho^2 z,\rho y)&=\rho^3 G_2(z,y),&\quad \rho&>0; \\ &&G_3(-z,y)&=G_3(z,y), &\qquad G_3(\rho^2 z,\rho y)&=\rho^3 G_3(z,y),&\quad \rho&>0. \end{alignedat} \end{equation*} \notag

The three-dimensional strata \mathcal{I}_{x\pm} and \mathcal{I}_{z\pm} (or \mathcal{N}_{x\pm}) consist of points such that the projections of length minimizers onto the (x,y)-plane are elasticae, which are inflectional, that is, with inflection points (or non-inflectional, that is, without inflection points, respectively); see § 2.6. For the one-dimensional strata \mathcal{E}_{\pm} the corresponding elastica are closed (have the shape of a ‘figure-of-eight’).

In Figs 35 and 36 we show the stratifications of the cut locus and its intersection with a coordinate subspace. In Fig. 35 the reader can see the adjacency topology of the quotients of strata of the cut locus by the dilations Y. In Fig. 36 we show the intersection \operatorname{Cut} \mathrel{\cap} \{x=z=0\}.

In Fig. 37 we show the quotient of the set \operatorname{Cut}\cap \{z=0\} by the dilations Y; the quotient \{z=0\}/ e^{\mathbb{R} Y} is shown there as the topological sphere \{g \in G \mid x^6+y^6+w^2=1\}. In a similar way, in Fig. 38 the quotient (\operatorname{Cut}\mathrel{\cap} \{x=0\})/ e^{\mathbb{R}Y} is shown on the topological sphere \{g \in G \mid y^6+|z|^3+w^2=1\}.

It is obvious that a unique sub-Riemannian length minimizer comes into each point g_1 \in G \setminus \operatorname{Cut}. Below we describe a similar property of points g_1 \in \operatorname{Cut}.

Theorem 2.48. (1) Precisely two length minimizers come into each point in the three- dimensional strata of the cut locus (these strata consist of Maxwell points that are not conjugate points).

(2) A unique length minimizer comes into each point in the two-dimensional strata (these strata consist of conjugate points that are not Maxwell points).

(3) A one-parameter family of length minimizers come into each point in the one- dimensional strata (these strata consist of Maxwell points that are incidentally conjugate points).

The cut locus is not closed because it contains points lying arbitrarily close to the reference point q_0, but not elasticae itself (this is a general fact of sub-Riemannian geometry). The closure of the cut locus in the sub-Riemannian problem on the Engel group has the following simple description.

Theorem 2.49. The equality \operatorname{cl}(\operatorname{Cut})=\operatorname{Cut} \mathrel{\sqcup} \mathcal{A}_+ \sqcup \mathcal{A}_- \sqcup \{g_0\} holds.

The abnormal trajectories \mathcal{A}_{\pm} adjoin strata of the cut locus as shown in Fig. 35.

Theorem 2.50. The following stratifications hold:

\begin{equation*} \operatorname{Cut} \cap \operatorname{Conj} = \bigsqcup_{i \in \{+,-\}\, j\in\{+,-\}} (\mathcal{CI}_{zi}^j \sqcup \mathcal{CI}_{xi}^j \sqcup \mathcal{CN}_{xi}^j) \sqcup \mathcal{E}_+\sqcup \mathcal{E}_- \end{equation*} \notag
and
\begin{equation*} \operatorname{Cut} \cap \operatorname{Max} = \bigsqcup_{i \in \{+,-\}} (\mathcal{I}_{zi} \sqcup \mathcal{I}_{xi} \sqcup \mathcal{N}_x^{i} \sqcup \mathcal{E}_i). \end{equation*} \notag

2.9.9. Spheres

Sub-Riemannian spheres are taken to one another by left shifts:

\begin{equation*} L_g(S_R(g_0))=S_R(g g_0), \end{equation*} \notag
and by dilations:
\begin{equation*} \delta_s(S_R(\operatorname{Id}))=S_{R'}(\operatorname{Id}), \qquad R'=e^s R, \end{equation*} \notag
so it is sufficient to examine the unit sphere S=S_1(\operatorname{Id}).

The unit sphere is invariant under reflections:

\begin{equation*} \varepsilon^i(S)=S, \qquad i=1,\dots,7. \end{equation*} \notag
Consider the cross-section of the unit sphere by the two-dimensional fixed-point manifold of the basic symmetries \varepsilon^1 and \varepsilon^2:
\begin{equation*} \widetilde{S}=\{g \in S \mid \varepsilon^1(g)= \varepsilon^2(g)=g\}=S \cap \{x=z=0\} \end{equation*} \notag
(see Fig. 39).

The cross-section \widetilde{S} is centrally symmetric because of the reflection \varepsilon^4:

\begin{equation*} \begin{gathered} \, \varepsilon^4(\gamma_i)=\gamma_{i+2}, \qquad i=1, 2, \\ \varepsilon^4(A_+)=A_-, \qquad \varepsilon^4(C_+)=C_-. \end{gathered} \end{equation*} \notag
Different points in \widetilde{S} can be characterized as follows: Points in \widetilde{S} have the following multiplicities \mu (the number of length minimizers from \operatorname{Id} to the point in question):

Theorem 2.51. The cross-section \widetilde{S} has the following regularity at different points:

(1) the curves \gamma_i are analytic and regular;

(2) A_{\pm} and C_{\pm} are singular points; \widetilde{S} is not smooth but Lipschitz at these points;

(3) \overline{\gamma}_2=\gamma_2 \cup \{C_+, A_+\} is smooth of class C^{\infty};

(4) \gamma_1 \cup \{C_+\} is smooth of class C^{\infty};

(5) \gamma_1 \cup \{A_-\} is smooth of class C^{1}.

Theorem 2.52. (1) The set \widetilde{S} \setminus \{A_+, A_-\} is semianalytic and therefore subanalytic.

(2) In a neighbourhood of A_- the curve \gamma_1 is the graph of a non-analytic function

\begin{equation*} w=\frac 16 Y^3-4 Y^3 \exp\biggl(-\frac{2}{Y}\biggr)(1+ o(1)), \qquad Y=\frac{y+1}{2} \to 0. \end{equation*} \notag

(3) The set \widetilde{S} is not semianalytic, so it is not subanalytic.

(4) The sphere S is not subanalytic.

Remark 2.4. That the Engel sphere S is not subanalytic also follows from its projection onto the (non-subanalytic) Martinet sphere (see § 2.3).

Theorem 2.53. In a neighbourhood of A_- the curve \gamma_1 is the graph of a function

\begin{equation*} w=F\biggl(Y,\frac{e^{-1/Y}}{Y}\biggr), \qquad Y=\frac{y+1}{2} \to 0, \end{equation*} \notag
in the \exp-\log-category, where F(\xi,\eta) is an analytic function in a neighbourhood of the point (\xi,\eta )=(0,0).

Hence \widetilde{S} is a set in the \exp-\log-category.

Theorem 2.54. The partition

\begin{equation*} \widetilde{S}=\bigcup_{i=1}^4 \gamma_i \cup \{A_+,A_-,C_+,C_-\} \end{equation*} \notag
is a Whitney stratification.

2.9.10. Explicit expressions for the sub-Riemannian distance

For some points in the Engel group we know their distances to the identity element:

2.9.11. Metric lines

Theorem 2.55. The following geodesics and only they are metric straight lines with natural parametrization on the Engel group:

(1) one-parameter subgroups tangent to the distribution:

\begin{equation} \begin{aligned} \, &e^{(u_1X_1+u_2X_2) t}=\operatorname{Exp}(\lambda, t), \qquad t \in \mathbb{R}, \\ &u_1=-\sin \theta, \quad u_2=\cos \theta, \quad \lambda=(\theta, c=0, \alpha) \in C_4\cup C_5, \nonumber \end{aligned} \end{equation} \tag{2.115}

(2) critical geodesics:

\begin{equation} \operatorname{Exp}(\lambda, t), \qquad \lambda \in C_3, \quad t\in \mathbb{R}. \end{equation} \tag{2.116}

Remark 2.5. The geodesics (2.115) project onto the (x,y)-plane as Euclidean straight lines. Among them only the curves

\begin{equation*} e^{X_2 t}=\operatorname{Exp}(\lambda,t), \qquad \lambda=(\theta=0, c=0, \alpha)\in C_4 \cup C_5, \end{equation*} \notag
are abnormal. The geodesics (2.116) project onto the (x,y)-plane as critical Euler elasticae (see Fig. 24), called Euler solitons.

2.9.12. Bibliographic comments

Subsections 2.9.1, 2.9.3, and 2.9.4 are based on [19], § 2.9.2 is based on [124], § 2.9.5 on [20], §§ 2.9.6 and 2.9.11 on [21], § 2.9.8 on [22], and § 2.9.9 on [145].

A parametization of the Riemannian geodesics on the Engel group was originally obtained in [158].

The sub-Riemannian problem on the Engel group was also considered in [23] and [142].

2.10. The sub-Riemannian problem on the Cartan group

2.10.1. The statement of the problem

The geometric setting. Consider the following generalization (sophistication) of problems on the Heisenberg group [143], [157] and Engel group (§ 2.9): the generalized Dido problem. Let a_0,a_1 \in \mathbb{R}^2 be points in the plane which are joined by a curve \gamma_0 \subset \mathbb{R}^2. Also fix S \in \mathbb{R} and c\in \mathbb{R}^2. The problem consists in connecting a_0 with a_1 by a shortest curve \gamma \subset \mathbb{R}^2 such that the two curves \gamma_0 and \gamma bound a plane domain of algebraic area S with centre of mass c.

The optimal control problem. We can also state this geometric problem as an optimal control problem:

\begin{equation} \dot{g}=u_1 X_1(g)+u_2 X_2(g), \qquad g=(x, y, z, v, w) \in \mathbb{R}^5, \end{equation} \tag{2.117}
\begin{equation} g(0)=g_0, \quad g(t_1)=g_1, \end{equation} \tag{2.118}
\begin{equation} l=\int_0^{t_1}\sqrt{u_1^2+u_2^2}\,\,dt \to \min, \end{equation} \tag{2.119}
\begin{equation} X_1=\frac{\partial}{\partial x}-\frac{y}{2}\,\frac{\partial}{\partial z}- \frac{x^2 +y^2}{2}\,\frac{\partial}{\partial w}\,, \quad X_2=\frac{\partial}{\partial y}+\frac{x}{2}\,\frac{\partial}{\partial z}+ \frac{x^2 +y^2}{2}\,\frac{\partial}{\partial v}\,. \end{equation} \tag{2.120}
This is a sub-Riemannian problem for the sub-Riemannian structure on \mathbb{R}^5 defined by the vector fields X_1 and X_2 as an orthonormal frame.

The Cartan algebra and Cartan group. The Cartan algebra if the free five- dimensional nilpotent Lie algebra \mathfrak{g} with two generators which has depth 3. There exists a basis \mathfrak{g}=\operatorname{span}(X_1,\dots,X_5) such that the nontrivial Lie brackets in this basis are

\begin{equation*} [X_1,X_2]=X_3, \quad [X_1,X_3]=X_4, \quad\text{and}\quad [X_2,X_3]=X_5 \end{equation*} \notag
(see Fig. 40).

The Cartan algebra has the grading

\begin{equation*} \mathfrak{g}=\mathfrak{g}^{(1)} \oplus \mathfrak{g}^{(2)} \oplus \mathfrak{g}^{(3)}, \end{equation*} \notag
where
\begin{equation*} \begin{gathered} \, \mathfrak{g}^{(1)}=\operatorname{span}(X_1,X_2),\quad \mathfrak{g}^{(2)}=\mathbb{R} X_3,\quad \mathfrak{g}^{(3)}=\operatorname{span}(X_4,X_5),\qquad [\mathfrak{g}^{(1)}, \mathfrak{g}^{(i)}]=\mathfrak{g}^{(i+1)}, \\ \text{and}\quad \mathfrak{g}^{(4)}=\mathfrak{g}^{(5)}=\{0\}, \end{gathered} \end{equation*} \notag
so it is a Carnot algebra. The corresponding connected and simply connected Lie group G is called the Cartan group.

On the space \mathbb{R}^5_{x,y,z,v,w} we can introduce multiplication by

\begin{equation*} \begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ v_1 \\ w_1\end{pmatrix}\cdot \begin{pmatrix} x_2 \\ y_2 \\ z_2 \\ v_2 \\ w_2\end{pmatrix}= \begin{pmatrix} x_1+x_2 \\ y_1+y_2 \\ z_1+z_2+(x_1 y_2-y_1 x_2)/2 \\ v_1+v_2+(x_1^2+y_1^2+x_1 x_2+y_1 y_2)y_2/2+x_1 z_2 \\ w_1+w_2-(x_1^2+y_1^2+x_1x_2+y_1 y_2)x_2/2+y_1z_2 \end{pmatrix}, \end{equation*} \notag
which makes of it the Cartan group, G \cong \mathbb{R}^5_{x,y,z,v,w}, so that the fields (2.120) are left invariant on this group. Thus, problem (2.117)(2.119) is a left-invariant sub-Riemannian problem on the Cartan group. Hence we can assume that g_0=\operatorname{Id}=(0,\dots,0).

Apart from the model (2.120), there are also other models of the sub-Riemannian problem on the Cartan group [10], [56], [124].

The left-invariant sub-Riemannian problem with growth vector (2,3,5) on the Cartan group is unique up to an automorphism of this group [124].

Special features of the problem. The sub-Riemannian problem on the Cartan group is the simplest left-invariant problem with the following properties:

This is the unique free nilpotent sub-Riemannian problem of depth 3 with Liouville-integrable normal Hamiltonian field of the Pontryagin maximum principle (Liouville non-integrable problems are free nilpotent problems of depth 3 and rank greater than 2 [50] and ones of depth greater than 3 and rank at least 2 [104]).

The distribution \Delta=\operatorname{span}(X_1,X_2) has a 14-dimensional algebra of infinitesimal symmetries, which is the special Lie algebra \mathfrak{g}_2: this fact goes back to È, Cartan’s famous ‘five-dimensional’ paper [62] (also see § 2.10.2 below).

Finally, the sub-Riemannian problem on the Cartan group provides a nilpotent approximation to any problem with growth vector (2,3,5), for instance,

Any of these reasons would suffice to investigate the sub-Riemannian problem on the Cartan group thoroughly.

2.10.2. Symmetries of the distribution and sub-Riemannian structure

Theorem 2.56. The Lie algebra of infinitesimal symmetries of the distribution \Delta on the Cartan group is the 14-dimensions algebra \mathfrak{g}_2 that is the non-compact real form of the special complex Lie algebra \mathfrak{g}_2^{\mathbb{C}}.

Theorem 2.57. The Lie algebra of infinitesimal symmetries of the nilpotent sub- Riemannian structure on the Cartan group is the 6-dimensional Lie algebra in which there exists a basis X_0,Y_1,\dots,Y_5 with non-trivial brackets

\begin{equation*} \begin{gathered} \, [X_0,Y_1]=-Y_2, \qquad [X_0,Y_2]=Y_1, \\ [X_0,Y_4]=-Y_5, \qquad [X_0,Y_5]=Y_4, \\ [Y_1, Y_2]=Y_3,\quad [Y_1, Y_3]=Y_4, \quad [Y_2, Y_3]=Y_5. \end{gathered} \end{equation*} \notag
The vector fields Y_1,\dots,Y_5 are right-invariant fields on G, while X_0 vanishes at the identity element. The commutators of these symmetries with the basis fields of the sub-Riemannian structure have the following form:
\begin{equation*} \begin{gathered} \, [Y_i, X_j]=0, \qquad i,j=1,\dots,5, \\ [X_0, X_1]= -X_2, \quad [X_0, X_2]=X_1, \quad [X_0, X_3]=0, \\ [X_0, X_4]=-X_5, \quad [X_0, X_5]=X_4. \end{gathered} \end{equation*} \notag
In the model (2.120)
\begin{equation*} X_0=-y\,\frac{\partial}{\partial x}+x\,\frac{\partial}{\partial y}- w\,\frac{\partial}{\partial v}+v\,\frac{\partial}{\partial w}\,. \end{equation*} \notag

A representation of the Lie algebra of symmetries of the distribution and sub- Riemannian structure by vector fields in \mathbb{R}^5 was presented in [124].

2.10.3. Geodesics

The existence of optimal controls in problem (2.117)(2.119) is a consequence of the Rashevskii–Chow and Filippov theorems.

The Pontryagin maximum principle. Going over from the minimization of length (2.119) to the minimization of the energy J=\dfrac{1}{2}\displaystyle\int_0^{t_1} (u_1^2+u_2^2)\,dt and using the Hamiltonians h_i(\lambda)=\langle\lambda, X_i\rangle, i=1,\dots,5, which are linear on fibres of T^*G we obtain the assumptions of the Pontryagin maximum principle

\begin{equation*} \begin{gathered} \, \dot h_1=-u_2 h_3,\quad \dot h_2=u_1 h_3,\quad \dot h_3=u_1 h_4+u_2 h_5,\quad \dot h_4=0,\quad \dot h_5=0, \\ \dot{g}=u_1 X_1+u_2 X_2, \\ u_1 h_1+u_2 h_2+\frac{\nu}{2}(u_1^2+u_2^2) \to \max_{(u_1,u_2) \in \mathbb{R}^2}, \\ \nu \leqslant 0,\qquad (h_1,\dots,h_5,\nu) \ne 0. \end{gathered} \end{equation*} \notag

Abnormal extremals. Abnormal extremals of constant velocity can be parametrized as follows:

\begin{equation} h_1= h_2=h_3=0, \quad (h_4, h_5) \equiv \operatorname{const} \ne 0, \nonumber \end{equation} \notag
\begin{equation} (u_1, u_2) \equiv \operatorname{const}, \nonumber \end{equation} \notag
\begin{equation} x=u_1 t, \end{equation} \tag{2.121}
\begin{equation} y=u_2 t, \end{equation} \tag{2.122}
\begin{equation} z=0, \end{equation} \tag{2.123}
\begin{equation} v=\frac{1}{6}(u_1^2+u_2^2)u_1 t^3, \end{equation} \tag{2.124}
\begin{equation} w=-\frac{1}{6}(u_1^2+u_2^2)u_2 t^3. \end{equation} \tag{2.125}

Abnormal trajectories (2.121)(2.125) are one-parameter subgroups g_t=e^{t(u_1X_1+u_2X_2)} tangent to the distribution \Delta. They project onto the (x,y)-planes as straight lines, so they are length minimizers.

The abnormal set is a smooth two-dimensional manifold diffeomorphic to \mathbb{R}^2:

\begin{equation*} \operatorname{Abn}=\biggl\{g \in G \Bigm| z=v-\frac{1}{6}(x^2+y^2)x= w+\frac{1}{6}(x^2+y^2)y=0\biggr\}. \end{equation*} \notag

Normal extremals. Normal extremals satisfy the Hamiltonian system

\begin{equation} \dot{\lambda}=\vec{H}(\lambda), \quad \lambda \in T^*G, \end{equation} \tag{2.126}
with Hamiltonian H=(h_1^2+h_2^2)/2. On the level surface \{H=1/2\} we introduce the coordinates (\theta,c,\alpha,\beta) \in S^1\times\mathbb{R}\times\mathbb{R}_+\times S^1 such that
\begin{equation} h_1=\cos \theta, \quad h_2=\sin \theta, \quad h_3=c, \quad h_4=\alpha \sin \beta, \quad h_5=-\alpha \cos \beta. \end{equation} \tag{2.127}
Then the Hamiltonian system (2.126) becomes
\begin{equation} \dot{\theta}=c, \quad \dot c=-\alpha \sin(\theta-\beta), \quad \dot{\alpha}=\dot{\beta}=0, \end{equation} \tag{2.128}
\begin{equation} \dot{g}=\cos \theta\, X_1+\sin \theta\,X_2. \end{equation} \tag{2.129}
The vertical subsystem (2.128) is the pendulum equations.

The projections of normal geodesics onto the (x,y)-plane are Euler elasticae (see § 2.6).

Abnormal length minimizers (2.121)(2.125) satisfy the normal Hamiltonian system (2.128), (2.129) for \theta=\beta and c=0, so they are non-strictly abnormal.

The symplectic foliation and Casimir functions. There exist three independent Casimir functions on the Lie coalgebra \mathfrak{g}^*:

\begin{equation*} h_4, \quad h_5, \quad E=\frac{h_3^2}{2}+h_1 h_5-h_2 h_4. \end{equation*} \notag
The symplectic foliation on \mathfrak{g}^* consists of
  • \bullet the two-dimensional parabolic cylinders
    \begin{equation*} \{h_4=\operatorname{const}, \ h_5=\operatorname{const}, \ E=\operatorname{const}, \ h_4^2+h_5^2 \ne 0\}, \end{equation*} \notag
  • \bullet the two-dimensional affine planes
    \begin{equation*} \{h_4=h_5=0, \ h_3=\operatorname{const} \ne 0\}, \end{equation*} \notag
  • \bullet the points
    \begin{equation*} \{h_1=\operatorname{const}, \ h_2=\operatorname{const}, \ h_3=h_4=h_5=0\}. \end{equation*} \notag
Symplectic leaves have dimension at most 2, so the vertical subsystem (2.128) is Liouville integrable.

Parametrization of normal geodesics. The family of normal extremals on the level surface \{H=1/2\} is parametrized by their initial points on the cylinder

\begin{equation*} C=\mathfrak{g}^* \cap \biggl\{H=\frac{1}{2}\biggr\}. \end{equation*} \notag
This cylinder is stratified depending on different types of trajectories of the pendulum (2.128):
\begin{equation*} C=\bigsqcup_{i=1}^7 C_i, \end{equation*} \notag
where
\begin{equation*} \begin{gathered} \, C_1=\{\lambda \in C \mid \alpha > 0, \ E \in (-\alpha,\alpha)\}, \\ C_2=\{\lambda \in C \mid \alpha > 0, \ E \in (\alpha,+\infty)\}, \\ C_3=\{\lambda \in C \mid \alpha > 0, \ E=\alpha, \ \theta-\beta \ne \pi\}, \\ C_4=\{\lambda \in C \mid \alpha > 0, \ E=-\alpha\}, \\ C_5=\{\lambda \in C \mid \alpha > 0, \ E=\alpha, \ \theta-\beta=\pi\}, \\ C_6=\{\lambda \in C \mid \alpha=0, \ c \ne 0\}, \end{gathered} \end{equation*} \notag
and
\begin{equation*} C_7=\{\lambda \in C \mid \alpha=c=0\}. \end{equation*} \notag
To parametrize normal geodesics, on the strata C_1, C_2, and C_3 we introduce elliptic coordinates (\varphi,k,\alpha,\beta) in which the pendulum equation (2.128) straightens out: if \lambda \in C_1, then
\begin{equation*} \begin{gathered} \, k=\sqrt{\frac{E+\alpha}{2\alpha}}= \sqrt{\sin^2\frac{\theta-\beta}{2}+\frac{c^2}{4\alpha}} \in (0,1), \qquad \varphi \in [0,4K], \\ \begin{cases} \sin\dfrac{\theta-\beta}{2}=k\operatorname{sn}(\sqrt{\alpha}\,\varphi), \\ \dfrac{c}{2}=k\sqrt{\alpha}\,\operatorname{cn}(\sqrt{\alpha}\,\varphi); \end{cases} \end{gathered} \end{equation*} \notag

if \lambda \in C_2, then

\begin{equation*} \begin{gathered} \, k=\sqrt{\frac{2\alpha}{E+\alpha}}=\biggl(\sqrt{\sin^2\frac{\theta-\beta}{2}+ \frac{c^2}{4\alpha}}\biggr)^{-1}\in (0, 1),\qquad \varphi \in [0,2kK], \\ \begin{cases} \sin\dfrac{\theta-\beta}{2}=\pm \operatorname{sn} \dfrac{\sqrt{\alpha}\,\varphi}{k}\,, \\ \dfrac{c}{2}=\pm \dfrac{\sqrt{\alpha}}{k} \operatorname{dn} \dfrac{\sqrt{\alpha}\,\varphi}{k}\,, \end{cases} \qquad \pm=\operatorname{sign} c, \\ \psi=\frac{\varphi}{k}\,; \end{gathered} \end{equation*} \notag
if \lambda \in C_3, then
\begin{equation*} \begin{gathered} \, k=1, \qquad \varphi \in (-\infty,+\infty), \\ \begin{cases} \sin\dfrac{\theta-\beta}{2}=\pm\tanh(\sqrt{\alpha}\,\varphi), \\ \dfrac{c}{2}=\pm\dfrac{\sqrt{\alpha}}{\cosh(\sqrt{\alpha}\,\varphi)}\,, \end{cases} \qquad \pm=\operatorname{sign} c. \end{gathered} \end{equation*} \notag
Then
\begin{equation*} \dot{\varphi}=1, \quad \dot{k}=\dot{\alpha}=\dot{\beta}=0. \end{equation*} \notag
The problem is invariant under left shifts on the Cartan group, the dilations
\begin{equation*} \begin{gathered} \, e^{sY}\!\colon (t,x,y,z,v,w)\mapsto (e^st,e^sx,e^sy,e^{2s}z,e^{3s}v,e^{3s}w), \\ (\theta,c,\alpha,\beta)\mapsto (\theta,e^{-s}c,e^{-2s}\alpha,\beta), \\ (\varphi,k,\alpha,\beta)\mapsto (e^s\varphi,k,e^{-2s}\alpha,\beta), \\ Y=x\,\frac{\partial}{\partial x}+y\,\frac{\partial}{\partial y}+ 2z\,\frac{\partial}{\partial z}+3v\,\frac{\partial}{\partial v}+ 3w\,\frac{\partial}{\partial w}\,, \end{gathered} \end{equation*} \notag
and the rotations
\begin{equation} \begin{aligned} \, e^{rX_0}\colon (x,y,z,v,w)&\mapsto (x\cos r-y\sin r,x\sin r+y\cos r,z, \nonumber \\ &\qquad v\cos r-w\sin r,v\sin r+w\cos r). \end{aligned} \end{equation} \tag{2.130}
Using dilations and rotations we can take any covector \lambda=(\varphi,k,\alpha,\beta) \in\bigcup_{i=1}^3C_i to the fundamental set \{\alpha=1, \ \beta=0\}. For \alpha=1, \beta=0, and \lambda \in\bigcup_{i=1}^3C_i geodesics g_t=(x_t,y_t,z_t,v_t,w_t) are parametrized as follows.

If \lambda \in C_1, then

\begin{equation*} \begin{gathered} \, x_t=2(\operatorname{E}(\varphi_t)-\operatorname{E}(\varphi))- (\varphi_t-\varphi), \\ y_t=2k(\operatorname{cn} \varphi-\operatorname{cn} \varphi_t), \\ z_t=2k(\operatorname{sn} \varphi_t \operatorname{dn} \varphi_t- \operatorname{sn}\varphi\operatorname{dn}\varphi)- k(\operatorname{cn}\varphi+\operatorname{cn}\varphi_t)x_t, \\ v_t=2k \operatorname{sn} \varphi_t \operatorname{dn} \varphi_t\cdot x_t- k \operatorname{cn} \varphi_t\cdot x_t^2-(1-2k^2+ 2k^2 \operatorname{cn} \varphi \operatorname{cn}\varphi_t) y_t, \end{gathered} \end{equation*} \notag
and
\begin{equation*} \begin{aligned} \, w_t&=-\frac{1}{6}\bigl[x_t^3+2(2k^2-1+6k^2\operatorname{cn}^2\varphi)x_t+ 2(\varphi_t-\varphi) \\ &\qquad+8k^2(\operatorname{sn} \varphi_t \operatorname{cn} \varphi_t \operatorname{dn} \varphi_t-\operatorname{sn} \varphi\operatorname{cn} \varphi \operatorname{dn} \varphi) \\ &\qquad-24 k^2 \operatorname{cn} \varphi (\operatorname{sn} \varphi_t \operatorname{dn} \varphi_t- \operatorname{sn} \varphi \operatorname{dn} \varphi)\bigr], \end{aligned} \end{equation*} \notag
where \varphi_t=\varphi+t.

If \lambda \in C_2, then

\begin{equation*} \begin{gathered} \, x_t=\frac{2}{k}\biggl(\operatorname{E}(\psi_t)- \operatorname{E}(\psi)-\frac{2-k^2}{2}(\psi_t-\psi)\biggr), \\ y_t=\pm \frac{2}{k}(\operatorname{dn} \psi-\operatorname{dn} \psi_t), \\ z_t=\pm \biggl(2(\operatorname{sn} \psi_t \operatorname{cn}\psi_t- \operatorname{sn} \psi \operatorname{cn} \psi)- \frac{1}{k}(\operatorname{dn}\psi+\operatorname{dn}\psi_t)x_t\biggr), \\ v_t=\pm \biggl(2\operatorname{sn} \psi_t \operatorname{cn} \psi_t\cdot x_t- \frac{1}{k} \operatorname{dn} \psi_t\cdot x_t^2 \biggr)+ \frac{1}{k^2}(2-k^2-2\operatorname{dn} \psi \operatorname{dn} \psi_t) y_t, \end{gathered} \end{equation*} \notag
and
\begin{equation*} \begin{aligned} \, w_t&=-\frac{1}{6}\biggl(x_t^3+\frac{2}{k^2}(2-k^2+ 6 \operatorname{dn}^2 \psi) x_t+2 k(\psi_t-\psi) \\ &\qquad+\frac{8}{k}(\operatorname{sn}\psi_t\operatorname{cn} \psi_t \operatorname{dn}\psi_t-\operatorname{sn} \psi \operatorname{cn} \psi \operatorname{dn}\psi) \\ &\qquad-\frac{24}{k}\operatorname{dn}\psi\,(\operatorname{sn}\psi_t \operatorname{cn}\psi_t-\operatorname{sn}\psi\operatorname{cn}\psi)\biggr), \end{aligned} \end{equation*} \notag
where \pm=\operatorname{sign}c and \psi_t=\psi+t/k.

If \lambda \in C_3, then

\begin{equation*} \begin{gathered} \, x_t=2(\tanh \varphi_t-\tanh\varphi)-(\varphi_t-\varphi), \\ y_t=\pm 2 \biggl(\frac{1}{\cosh\varphi}-\frac{1}{\cosh\varphi_t}\biggr), \\ z_t=\pm \biggl( 2 \biggl( \frac{\operatorname{sinh} \varphi_t} {\cosh^2 \varphi_t}-\frac{\operatorname{sinh}\varphi}{\cosh^2 \varphi} \biggr)- \biggl( \frac{1}{\cosh \varphi}+\frac{1}{\cosh \varphi_t} \biggr) x_t \biggr), \\ v_t=\pm \biggl(\frac{2}{\operatorname{sinh} \varphi_t}\,x_t- \frac{1}{\cosh \varphi_t}\,x_t^2\biggr)+ \biggl(1-\frac{2}{\cosh \varphi \cosh \varphi_t}\biggr) y_t, \end{gathered} \end{equation*} \notag
and
\begin{equation*} \begin{aligned} \, w_t&=-\frac{1}{6}\biggl(x_t^3+ 6\,\frac{2+\cosh^2\varphi}{\cosh^2\varphi}\,x_t+6(\varphi_t-\varphi) \\ &\qquad-\frac{24}{\cosh\varphi}\biggl(\frac{\operatorname{sinh} \varphi_t} {\cosh^2 \varphi_t}-\frac{\operatorname{sinh} \varphi}{\cosh^2 \varphi}\biggr)- 8(\tanh^3 \varphi_t-\tanh^3 \varphi) \biggr), \end{aligned} \end{equation*} \notag
where \pm=\operatorname{sign} c and \varphi_t=\varphi+t.

We obtain a parametrization of geodesics for arbitrary \lambda=(\varphi,k,\alpha,\beta) \in\bigcup_{i=1}^3C_i from the case where \alpha=1 and \beta=0 by use of rotations and dilations:

\begin{equation*} \begin{gathered} \, g_t(\varphi,k,\alpha,\beta)=e^{-rX_0}\circ e^{-sY}(g_{t'}(\varphi',k,\alpha'=1,\beta'=0)), \\ t'=t\sqrt{\alpha}\,, \quad \varphi'=\varphi\sqrt{\alpha}\,, \quad r=-\beta, \quad s=\frac{1}{2} \log \alpha. \end{gathered} \end{equation*} \notag
In the remaining cases, where \lambda=(\theta,c,\alpha,\beta) \in \bigcup_{i=4}^7C_i, geodesics are parametrized by elementary functions:

if \lambda=(\theta,c,\alpha,\beta) \in C_4 \cup C_5 \cup C_7 and \beta=0, then

\begin{equation*} (x_t,y_t,z_t,v_t,w_t)=\biggl(t,0,0,0,-\frac{t^3}{6}\biggr); \end{equation*} \notag
while in the general case, where \lambda \in C_4 \cup C_5 \cup C_7,
\begin{equation*} g_t(\theta,c,\alpha,\beta)= e^{-r X_0}\bigl(g_t(\theta',c,\alpha,\beta'=0)\bigr), \quad \theta'=\theta-\beta, \quad r=-\beta; \end{equation*} \notag

if \lambda=(\theta=0,c,\alpha=0) \in C_6, then

\begin{equation*} \begin{gathered} \, x_t=\frac{\sin \tau}{c}\,, \qquad y_t=\frac{1-\cos \tau}{c}\,, \qquad z_t=\frac{\tau-\sin \tau}{2c^2}\,, \\ v_t=\frac{\cos(2\tau)-4 \cos \tau+3}{4c^3}\,, \qquad w_t=\frac{\sin(2\tau)-4 \sin \tau+2\tau}{4c^3}\,, \qquad \tau=ct; \end{gathered} \end{equation*} \notag
while in the general case where \lambda \in C_6,
\begin{equation*} g_t(\theta,c,\alpha=0,t)=e^{\theta X_0}(g_t(\theta' =0,c,\alpha=0,t)). \end{equation*} \notag

The family of all geodesics is parametrized by means of the exponential map:

\begin{equation*} \operatorname{Exp}\colon(\lambda,t) \mapsto g_t=\pi \circ e^{t \vec H}(\lambda), \quad C \times \mathbb{R}_+ \to G. \end{equation*} \notag

2.10.4. Symmetries and Maxwell strata

Continuous symmetries. Dilations and rotations form a two-parameter group of continuous symmetries of the exponential map.

Consider the Haimltonians

\begin{equation*} h_0(\lambda)=\langle \lambda,X_0(g) \rangle \quad\text{and}\quad h_Y(\lambda)=\langle \lambda,Y(g) \rangle,\qquad \lambda \in T^*G, \end{equation*} \notag
which are linear on fibres of T^*G, and consider the corresponding Hamiltonian vector fields
\begin{equation*} \vec h_0,\vec h_Y \in \operatorname{Vec}(T^* G). \end{equation*} \notag
Then
\begin{equation*} \begin{alignedat}{2} [\vec h_0, \vec H]&=0, &\qquad \vec h_0 H&=0, \\ [\vec h_Y, \vec H]&=-2 \vec H, &\qquad \vec h_Y H&=-2 H. \end{alignedat} \end{equation*} \notag
Let e=\displaystyle\sum_{i=1}^5 h_i\,\dfrac{\partial}{\partial h_i} be a vertical Euler field on T^*G. As H is quadratic on fibres of T^*G , the Hamiltonian field \vec H is linear on fibres, so that
\begin{equation*} [e,\vec H]=\vec H \quad\text{and}\quad e H=2H. \end{equation*} \notag
Hence the vector field Z=\vec h_Y+e satisfies the equalities
\begin{equation} \nonumber [Z,\vec H]=-\vec H \quad\text{and}\quad Z H=0. \end{equation} \notag
Moreover,
\begin{equation*} [\vec h_0,Z]=0. \end{equation*} \notag

Proposition 2.12. For all t,s,r \in \mathbb{R} and \lambda \in T^*G

\begin{equation*} e^{rZ} \circ e^{s \vec h_0} \circ e^{t \vec H}(\lambda)= e^{t' \vec H} \circ e^{r Z} \circ e^{s \vec h_0}(\lambda),\quad \textit{where } t'=t e^r. \end{equation*} \notag

Discrete symmetries. The quotient of the vertical system (2.128) by the rotations X_0 and dilations Y is the standard pendulum equation

\begin{equation*} \dot \theta=c, \quad \dot c=-\sin \theta, \qquad (\theta,c) \in S^1 \times \mathbb{R}. \end{equation*} \notag
Its direction field has obvious discrete symmetries, namely, the reflections in the coordinate axes and in the origin
\begin{equation*} \begin{gathered} \, \varepsilon^1\colon(\theta, c) \to (\theta,-c), \\ \varepsilon^2\colon(\theta, c) \to (-\theta, c), \end{gathered} \end{equation*} \notag
and
\begin{equation*} \varepsilon^3\colon (\theta, c) \to (-\theta,-c). \end{equation*} \notag
These reflections generate the dihedral group
\begin{equation*} D_2=\{\operatorname{Id},\varepsilon^1,\varepsilon^2,\varepsilon^3\}= \mathbb{Z}_2 \times \mathbb{Z}_2. \end{equation*} \notag
The actions of reflections extend in a natural way to Euler elasticae (x_t,y_t), so modulo the rotations of the (x,y)-plane, The actions of reflections also extend in a natural way to the source space of the exponential map:
\begin{equation*} \varepsilon^i\colon C \times\mathbb{R}_+\to C \times \mathbb{R}_+,\qquad i=1, 2, 3, \end{equation*} \notag
and the image of this map:
\begin{equation*} \varepsilon^i\colon G \to G, \qquad i=1, 2, 3, \end{equation*} \notag
so that
\begin{equation*} \varepsilon^i \circ \operatorname{Exp}(\lambda, t)= \operatorname{Exp} \circ \varepsilon^i(\lambda,t), \qquad (\lambda, t) \in C \times \mathbb{R}_+, \quad i=1, 2, 3. \end{equation*} \notag
More explicitly,
\begin{equation*} \begin{aligned} \, \varepsilon^1 \colon (\theta, c, \alpha, \beta, t) &\mapsto (\theta^1, c^1, \alpha, \beta^1, t)=(\theta_t, -c_t, \alpha, \beta, t), \\ \varepsilon^2 \colon (\theta, c, \alpha, \beta, t) &\mapsto (\theta^2, c^2, \alpha, \beta^2, t)=(-\theta_t, c_t, \alpha, -\beta, t), \\ \varepsilon^3 \colon (\theta, c, \alpha, \beta, t) &\mapsto (\theta^3, c^3, \alpha, \beta^3, t)=(-\theta, -c, \alpha, -\beta, t) \end{aligned} \end{equation*} \notag
and
\begin{equation*} \begin{aligned} \, \varepsilon^1\colon (x, y, z, v, w) &\mapsto (x, y, -z, v-xz, w-yz), \\ \varepsilon^2\colon (x, y, z, v, w) &\mapsto (x, -y, z, -v+xz, w-yz), \\ \varepsilon^3\colon (x, y, z, v, w) &\mapsto (x, -y, -z, -v, w). \end{aligned} \end{equation*} \notag
The symmetry group \operatorname{Sym} of the exponential map consists of rotations, reflections, and their compositions:
\begin{equation*} \begin{aligned} \, e^{s \vec h_0},e^{s\vec h_0} \circ \varepsilon^i&\colon C \times \mathbb{R}_+\to C \times \mathbb{R}_+, \\ e^{s X_0},e^{sX_0} \circ \varepsilon^i&\colon G\to G. \end{aligned} \end{equation*} \notag

Theorem 2.58. Let \lambda \in C. Then for almost all geodesics \operatorname{Exp}(\lambda,t) the first Maxwell time corresponding to the group \operatorname{Sym} of symmetries of the exponential map has the following expression:

\begin{equation*} \begin{aligned} \, \lambda \in C_1 &\quad\Longrightarrow\quad t_{\rm Max}^1(\lambda)= \min \biggl(\frac{2}{\sqrt{\alpha}}\,p_1^z(k), \frac{2}{\sqrt{\alpha}}\,p_1^V(k)\biggr), \\ \lambda \in C_2 &\quad\Longrightarrow\quad t_{\rm Max}^1(\lambda)= \frac{2k}{\sqrt{\alpha}}\,p_1^V(k), \\ \lambda \in C_6 &\quad\Longrightarrow\quad t_{\rm Max}^1(\lambda)= \frac{4}{|c|}\,p_1^V(0) \end{aligned} \end{equation*} \notag
and
\begin{equation*} \lambda \in C_i, \quad i=3, 4, 5, 7 \quad\Longrightarrow\quad t_{\rm Max}^1(\lambda)=+ \infty. \end{equation*} \notag
Here p=p_1^z(k) \in (K,3K) is the first positive zero of the function
\begin{equation*} f_z(p,k)=\operatorname{sn} p \operatorname{dn} p- (2 \operatorname{E}(p)-p) \operatorname{cn} p, \end{equation*} \notag
p=p_1^V(k) is the first positive zero of
\begin{equation*} \begin{aligned} \, f_V(p)&=\frac{4}{3}\operatorname{sn}p \, \operatorname{dn}p \bigl[-p-2(1-2 k^2+6 k^2 \operatorname{cn}p^2)(2\operatorname{E}(p)-p)+ (2\operatorname{E}(p)-p)^3 \\ &\qquad+8 k^2\operatorname{cn}p \, \operatorname{sn}p \, \operatorname{dn}p\bigr]+4\operatorname{cn}p \, (1-2 k^2 \operatorname{sn}p^2)(2 \operatorname{E}(p)-p)^2 \end{aligned} \end{equation*} \notag
for \lambda \in C_1 (in this case p_1^V(k) \in [2K,4K)) and of
\begin{equation*} \begin{aligned} \, f_V(p)&=\frac{4}{3}\bigl\{ 3\,\operatorname{dn}p\, (2\operatorname{E}(p)-(2-k^2)p)^2+\operatorname{cn}p\, \bigl[8\operatorname{E}^3(p)-4\operatorname{E}(p)(4+k^2) \\ &\qquad-12\operatorname{E}^2(p)(2-k^2)p +6\operatorname{E}(p)(2-k^2)^2 p^2 \\ &\qquad+p(16-4k^2-3k^4-(2-k^2)^3p^2)\bigr]\,\operatorname{sn}p \\ &\qquad-2\,\operatorname{dn}p\,(-4k^2+3(2\operatorname{E}(p)- (2-k^2)p)^2)\,\operatorname{sn}p^2 \\ &\qquad+12k^2\operatorname{cn}p\,(2\operatorname{E}(p)- (2-k^2)p)\operatorname{sn}p^3- 8k^2\,\operatorname{sn}p^4\operatorname{dn}p\bigr\} \end{aligned} \end{equation*} \notag
for \lambda \in C_2 (in this case p_1^V(k) \in (K,2K)), and p=p_1^V(0) \in (\pi/2,\pi) is the first positive zero of the function
\begin{equation*} f_V^0(p)=\frac{1}{512}[(32p^2-1)\cos(2p)-8p\sin(2p)+\cos(6p)]. \end{equation*} \notag

Remark 2.6. On those geodesics where the first Maxwell time corresponding to the group \operatorname{Sym} is distinct from t_{\rm Max}^1, it is greater than this quantity, while t_{\rm Max}^1 is the first conjugate time.

Theorem 2.59. The function t_{\rm Max}^1\colon C \to (0,+\infty] has the following invariance properties:

(1) t_{\rm Max}^1(\lambda) depends only on E and |\alpha|;

(2) t_{\rm Max}^1(\lambda) is a first integral of the field \vec H_v;

(3) t_{\rm Max}^1(\lambda) is rotation invariant: if (\lambda,t) \in C \times \mathbb{R}_+ and (\lambda^i, t)=\varepsilon^i(\lambda,t), then

\begin{equation*} t_{\rm Max}^1(\lambda^i)=t_{\rm Max}^1(\lambda); \end{equation*} \notag

(4) t_{\rm Max}^1(\lambda) is dilation homogeneous: if \lambda \in C and \lambda_s=\delta_s(\lambda) \in C, then

\begin{equation*} t_{\rm Max}^1(\lambda_s)=e^s\, t_{\rm Max}^1(\lambda),\qquad s \in \mathbb{R}. \end{equation*} \notag

2.10.5. A lower bound for the conjugate time

Theorem 2.60. For each \lambda \in C

\begin{equation*} t_{\rm conj}^1(\lambda) \geqslant t_{\rm Max}^1(\lambda). \end{equation*} \notag

2.10.6. The cut time and length minimizers

Theorem 2.61. For each \lambda \in C

\begin{equation*} t_{\rm cut}(\lambda)=t_{\rm Max}^1(\lambda). \end{equation*} \notag

Theorem 2.62. Let g_1=(x_1,y_1,z_1,v_1,w_1) \in G. If z_1\ne 0 and x_1 v_1+y_1 w_1-{(x_1^2+y_1^2)z_1}/{2}\ne 0, then there exists a unique length minimizer connecting g_0=\operatorname{Id} with g_1.

2.10.7. Metric straight lines

Theorem 2.63. The following geodesics (and only they) are metric straight lines with natural parametrization on the Cartan group:

(1) the one-parameter groups tangent to the distribution:

\begin{equation} \begin{gathered} \, e^{t(u_1 X_1+u_2 X_2) }=\operatorname{Exp}(\lambda,t), \\ u_1=\cos \theta, \quad u_2=\sin \theta, \quad \lambda=(\theta, c=0, \alpha, \beta)\in C_4\cup C_5\cup C_7, \nonumber \end{gathered} \end{equation} \tag{2.131}

(2) the critical geodesics

\begin{equation} \operatorname{Exp}(\lambda, t), \quad \lambda \in C_3. \end{equation} \tag{2.132}

Remark 2.7. Geodesics (2.131) project onto the (x,y)-plane as Euclidean straight lines, and the geodesics (2.132) project as critical Euler elasticae (see Fig. 24), called Euler solitons.

2.10.8. Bibliographic comments

The sub-Riemannian problem on the Cartan group was considered for the first time by Brockett and Dai [56], who showed that geodesics are integrated by elliptic functions.

Subsections 2.10.1 and 2.10.3 are based on [123]; § 2.10.2 is based on [124]; § 2.10.4 on [125]–[127]; § 2.10.5 on [141]; §§ 2.10.6 and 2.10.7 on [14]. Also see the recent paper [144].

3. Instead of a conclusion: several questions left out

For reasons of space we have not addressed several questions close to those considered above. We list them here.

1. Works on vaconomic mechanics [28]. In particular, authors have considered the ‘Chaplygin sledge’ problem in the variational form, and its hydrodynamic analogue, a planar inertial motion of a rigid body in a fluid; this problem has been integrated by elliptic functions [95]. If one of the added masses is let go to infinity, then we obtain a sub-Riemannian problem in the limit [92]. The problem of ball rolling over a plane was integrated by elliptic functions in [90]. In mechanics the sub-Riemannian problem on the motion group of three-dimensional space corresponds to problems in the dynamics of a rigid body with fixed point; it was considered in [93] together with Poinsot’s geometric picture.

2. Left-invariant sub-Finsler problems [16], [17], [24], [25], [30], [37], [38], [41], [42], [52], [57], [102], [138], [139].

3. Left-invariant sub-Lorentzian problems [26], [61], [80], [82], [91], [147].

4. Left-invariant sub-Riemannian problems with non-integrable geodesic flow [50], [77], [103], [104], [146].

5. Applications of left-invariant problems to nilpotent approximation and to a constructive solution of a two-point control problem [4], [7], [31]–[33], [47], [63], [71], [81], [85], [94], [97], [109], [118], [150], [152], [155], [156], [160].

6. Applications of left-invariant problems to image processing and vision models [34]–[36], [53], [54], [64], [66]–[68], [72]–[74], [110], [112], [113], [120], [121].

7. Applications of left-invariant problems to robotics [11], [13], [15], [27].

The author is thankful to A. A. Agrachev, V. V. Kozlov, A. V. Podobryaev, A. P. Mashtakov, A. A. Ardentov, and I. Yu. Beschastnyi for their helpful advice on the contents and presentation of this paper.

The author is also grateful to E. F. Sachkova for her help in typesetting the text survey and her permanent support during the work on this survey.


Bibliography

1. A. Agrachev and D. Barilari, “Sub-Riemannian structures on 3D Lie groups”, J. Dyn. Control Syst., 18:1 (2012), 21–44  crossref  mathscinet  zmath
2. A. Agrachev, D. Barilari, and U. Boscain, A comprehensive introduction to sub-Riemannian geometry. From the Hamiltonian viewpoint, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2020, xviii+745 pp.  crossref  mathscinet  zmath
3. A. Agrachev, B. Bonnard, M. Chyba, and I. Kupka, “Sub-Riemannian sphere in Martinet flat case”, ESAIM Control Optim. Calc. Var., 2 (1997), 377–448  crossref  mathscinet  zmath
4. A. Agrachev and A. Marigo, “Nonholonomic tangent spaces: intrinsic construction and rigid dimensions”, Electron. Res. Announc. Amer. Math. Soc., 9 (2003), 111–120  crossref  mathscinet  zmath
5. A. A. Agrachev and Yu. L. Sachkov, “An intrinsic approach to the control of rolling bodies”, Proceedings of the 38th IEEE conference on decision and control (Phoenix, AZ 1999), v. 1, IEEE, 1999, 431–435  crossref
6. A. A. Agrachev and Yu. L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Control theory and optimization II, Springer-Verlag, Berlin, 2004, xiv+412 pp.  crossref  mathscinet  zmath
7. A. A. Agrachev and A. V. Sarychev, “Filtrations of a Lie algebra of vector fields and nilpoint approximation of controlled systems”, Dokl. Akad. Nauk SSSR, 295:4 (1987), 777–781  mathnet  mathscinet  zmath; English transl. in Dokl. Math., 36:1 (1988), 104–108
8. N. I. Akhiezer, Elements of the theory of elliptic functions, 2nd ed., Nauka, Moscow, 1970, 304 pp.  mathscinet  zmath; English transl. Transl. Math. Monogr., 79, Amer. Math. Soc., Providence, RI, 1990, viii+237 pp.  crossref  mathscinet  zmath
9. S. S. Antman, “The influence of elasticity on analysis: modern developments”, Bull. Amer. Math. Soc. (N. S.), 9:3 (1983), 267–291  crossref  mathscinet  zmath
10. A. Anzaldo-Menezes and F. Monroy-Pérez, “Charges in magnetic fields and sub-Riemannian geodesics”, Contemporary trends in nonlinear geometric control theory and its applications (México City 2000), World Sci. Publ., River Edge, NJ, 2002, 183–202  crossref  mathscinet  zmath
11. A. A. Ardentov, “Controlling of a mobile robot with a trailer and its nilpotent approximation”, Regul. Chaotic Dyn., 21:7-8 (2016), 775–791  mathnet  crossref  mathscinet  zmath
12. A. Ardentov, G. Bor, E. Le Donne, R. Montgomery, and Yu. Sachkov, “Bicycle paths, elasticae and sub-Riemannian geometry”, Nonlinearity, 34:7 (2021), 4661–4683  crossref  mathscinet  zmath  adsnasa
13. A. A. Ardentov and I. S. Gubanov, “Modelling trailer car parking along Markov–Dubins and Reeds–Shepp paths”, Program. Sist. Theor. Prilozhen., 10:4 (2019), 97–110 (Russian)  mathnet  crossref
14. A. Ardentov and E. Hakavuori, “Cut time in the sub-Riemannian problem on the Cartan group”, ESAIM Control Optim. Calc. Var., 28 (2022), 12, 19 pp.  crossref  mathscinet  zmath
15. A. A. Ardentov, Y. L. Karavaev, and K. S. Yefremov, “Euler elasticas for optimal control of the motion of mobile wheeled robots: the problem of experimental realization”, Regul. Chaotic Dyn., 24:3 (2019), 312–328  mathnet  crossref  mathscinet  zmath  adsnasa
16. A. A. Ardentov, E. Le Donne, and Yu. L. Sachkov, “Sub-Finsler geodesics on the Cartan group”, Regul. Chaotic Dyn., 24:1 (2019), 36–60  mathnet  crossref  mathscinet  zmath  adsnasa
17. A. A. Ardentov, E. Le Donne, and Yu. L. Sachkov, “A sub-Finsler problem on the Cartan group”, Optimal control and differential equations, Tr. Mat. Inst. Steklova, 304, Seklov Mathematical Institute, Moscow, 2019, 49–67  mathnet  crossref  mathscinet  zmath; English transl. in Proc. Steklov Inst. Math., 304 (2019), 42–59  crossref
18. A. A. Ardentov and Yu. L. Sachkov, “Solution to Euler's elastic problem”, Avtomat. Tekemekh., 2009, no. 4, 78–88  mathnet  mathscinet  zmath; English transl. in Autom. Remote Control, 70:4 (2009), 633–643  crossref
19. A. A. Ardentov and Yu. L. Sachkov, “Extremal trajectories in a nilpotent sub-Riemannian problem on the Engel group”, Mat. Sb., 202:11 (2011), 31–54  mathnet  crossref  mathscinet  zmath; English transl. in Sb. Math., 202:11 (2011), 1593–1615  crossref  adsnasa
20. A. A. Ardentov and Yu. L. Sachkov, “Conjugate points in nilpotent sub-Riemannian problem on the Engel group”, J. Math. Sci. (N. Y.), 195:3 (2013), 369–390  crossref  mathscinet  zmath
21. A. A. Ardentov and Yu. L. Sachkov, “Cut time in sub-Riemannian problem on Engel group”, ESAIM Control Optim. Calc. Var., 21:4 (2015), 958–988  crossref  mathscinet  zmath
22. A. A. Ardentov and Yu. L. Sachkov, “Maxwell strata and cut locus in the sub-Riemannian problem on the Engel group”, Regul. Chaotic Dyn., 22:8 (2017), 909–936  mathnet  crossref  mathscinet  zmath  adsnasa
23. A. A. Ardentov and Yu. L. Sachkov, “Cut locus in the sub-Riemannian problem on Engel group”, Dokl. Ross. Akad. Nauk, 478:6 (2018), 623–626  crossref  mathscinet  zmath; English transl. in Dokl. Math., 97:1 (2018), 82–85  crossref
24. A. A. Ardentov and Yu. L. Sachkov, “Sub-Finsler problem on the Cartan group”, Dokl. Ross. Akad. Nauk, 484:2 (2019), 138–141  crossref  zmath; English transl. in Dokl. Math., 99:1 (2019), 20–22  crossref  mathscinet
25. A. A. Ardentov and Yu. L. Sachkov, “Sub-Finsler structures on the Engel group”, Dokl. Ros. Akad. Nauk, 485:4 (2019), 395–398  crossref  zmath; English transl. in Dokl. Math., 99:2 (2019), 171–174  crossref  mathscinet
26. A. A. Ardentov, Yu. L. Sachkov, T. Huang, and X. Yang, “Extremal trajectories in the sub-Lorentzian problem on the Engel group”, Mat. Sb., 209:11 (2018), 3–31  mathnet  crossref  mathscinet  zmath; English transl. in Sb. Math., 209:11 (2018), 1547–1574  crossref  adsnasa
27. A. A. Ardentov and A. V. Smirnov, “Control of a mobile robot along Euler elasticae”, Program. Sistemy Teor. Prilozhen., 8:4 (2017), 163–178 (Russian)  mathnet  crossref
28. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, 2nd revised and augmented ed., Editorial URSS, 2002, 416 pp.; English transl. Encyclopaedia Math. Sci., 3, Dynamical systems. III, 3rd rev. ed., Springer-Verlag, Berlin, 2006, xiv+518 pp.  crossref  mathscinet  zmath
29. A. M. Arthurs and G. R. Walsh, “On Hammersley's minimum problem for a rolling sphere”, Math. Proc. Cambridge Philos. Soc., 99:3 (1986), 529–534  crossref  mathscinet  zmath
30. D. Barilari, U. Boscain, E. Le Donne, and M. Sigalotti, “Sub-Finsler structures from the time-optimal control viewpoint for some nilpotent distributions”, J. Dyn. Control Syst., 23:3 (2017), 547–575  crossref  mathscinet  zmath
31. A. Bellaïche, “The tangent space in sub-Riemannian geometry”, Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 1–78  crossref  mathscinet  zmath
32. A. Bellaïche, J.-P. Laumond, and M. Chyba, “Canonical nilpotent approximation of control systems: application to nonholonomic motion planning”, Proceedings of 32nd IEEE conference on decision and control (San Antonio, TX), v. 3, IEEE, 1993, 2694–2699  crossref
33. A. Bellaïche, J.-P. Laumond, and J.-J. Risler, “Nilpotent infinitesimal approximations to a control Lie algebra”, Nonlinear control systems design 1992, Selected papers from the 2nd IFAC symposium (Bordeaux 1992), IFAC Symposia Series, Pergamon Press, Oxford, 1993, 101–108  crossref
34. E. J. Bekkers, R. Duits, A. Mashtakov, and G. R. Sanguinetti, “A PDE approach to data-driven sub-Riemannian geodesics in \mathrm{SE}(2)”, SIAM J. Imaging Sci., 8:4 (2015), 2740–2770  crossref  mathscinet  zmath
35. E. J. Bekkers, R. Duits, A. Mashtakov, and Yu. Sachkov, “Vessel tracking via sub-Riemannian geodesics on the projective line bundle”, Geometric science of information, Lecture Notes in Comput. Sci., 10589, Springer, Cham, 2017, 773–781  crossref  mathscinet  zmath
36. G. Ben-Yosef and O. Ben-Shahar, “A tangent bundle theory for visual curve completion”, IEEE Trans. Pattern Anal. Mach. Intell., 34:7 (2012), 1263–1280  crossref
37. V. N. Berestovskii, “Homogeneous manifolds with intrinsic metric. II”, Sibirsk. Mat. Zh., 30:2 (1989), 14–28  mathnet  mathscinet  zmath; English transl. in Siberian Math. J., 30:2 (1989), 180–191  crossref
38. V. N. Berestovskii, “Structure of homogeneous locally compact spaces with intrinsic metric”, Sibirsk. Mat. Zh., 30:1 (1989), 23–34  mathnet  mathscinet  zmath; English transl. in Siberian Math. J., 30:1 (1989), 16–25  crossref
39. V. N. Berestovskii, “Geodesics of a left-invariant nonholonomic Riemannian metric on the group of motions of the Euclidean plane”, Sibirsk. Mat. Zh., 35:6 (1994), 1223–1229  mathnet  mathscinet  zmath; English transl. in Siberian Math. J., 35:6 (1994), 1083–1088  crossref
40. V. N. Berestovskii, “Geodesics of nonholonomic left-invariant intrinsic metrics on the Heisenberg group and isoperimetric curves on the Minkowski plane”, Sibirsk. Mat. Zh., 35:1 (1994), 3–11  mathnet  mathscinet  zmath; English transl. in Siberian Math. J., 35:1 (1994), 1–8  crossref
41. V. N. Berestovskii and I. A. Zubareva, “Extremals of a left-invariant sub-Finsler metric on the Engel group”, Sibirsk. Mat. Zh., 61:4 (2020), 735–751  mathnet  crossref  mathscinet  zmath; English transl. in Siberian Math. J., 61:4 (2020), 575–588  crossref
42. V. N. Berestovskii and I. A. Zubareva, “PMP, (co)adjoint representation, and normal geodesics, of left-invariant (sub-)Finsler metric on Lie groups”, Chebyshevskii Sb., 21:2 (2020), 43–64  mathnet  crossref  mathscinet  zmath
43. D. Bernoulli, “26th letter to L. Euler (October, 1742)”: P. H. Fuss, Correspondance mathématique et physique, v. 2, St. Petersburg, 1843, 499–507
44. J. Bernoulli, “Véritable hypothèse de la résistance des solides, avec la demonstration de la corbure des corps qui font ressort”, Collected works, v. 2, Geneva, 1744
45. I. Beschastnyi and A. Medvedev, “Left-invariant Sub-Riemannian Engel structures: abnormal geodesics and integrability”, SIAM J. Control Optim., 56:5 (2018), 3524–3537  crossref  mathscinet  zmath
46. I. Yu. Beschastnyi and Yu. L. Sachkov, “Geodesics in the sub-Riemannian problem on the group \operatorname{SO}(3)”, Mat. Sb., 207:7 (2016), 29–56  mathnet  crossref  mathscinet  zmath; English transl, in Sb. Math., 207:7 (2016), 915–941  crossref  adsnasa
47. R. M. Bianchini and G. Stefani, “Graded approximations and controllability along a trajectory”, SIAM J. Control Optim., 28:4 (1990), 903–924  crossref  mathscinet  zmath
48. A. Bicchi, D. Prattichizzo, and S. Sastry, “Planning motions of rolling surfaces”, Proceedings of 1995 34th IEEE conference on decision and control (New Orleans, LA 1995), v. 3, IEEE, 1995, 2812–2817  crossref
49. K. E. Bisshopp and D. C. Drucker, “Large deflection of cantilever beams”, Quart. Appl. Math., 3 (1945), 272–275  crossref  mathscinet  zmath
50. I. A. Bizyaev, A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups”, Regul. Chaotic Dyn., 21:6 (2016), 759–774  mathnet  crossref  mathscinet  zmath  adsnasa
51. M. Born, Stabilität der elastischen Linie in Ebene und Raum, Preisschrift und Dissertation, Dieterichsche Universitäts-Buchdruckerei Göttingen, Göttingen, 1906, 101 pp.  zmath
52. U. Boscain, Th. Chambrion, and G. Charlot, “Nonisotropic 3-level quantum systems: complete solutions for minimum time and minimum energy”, Discrete Contin. Dyn. Syst. Ser. B, 5:4 (2005), 957–990  crossref  mathscinet  zmath
53. U. Boscain, R. Duits, F. Rossi, and Yu. Sachkov, “Curve cuspless reconstruction via sub-Riemannian geometry”, ESAIM Control Optim. Calc. Var., 20:3 (2014), 748–770  crossref  mathscinet  zmath
54. U. Boscain, R. A. Chertovskih, J.-P. Gauthier, and A. O. Remizov, “Hypoelliptic diffusion and human vision: a semidiscrete new twist”, SIAM J. Imaging Sci., 7:2 (2014), 669–695  crossref  mathscinet  zmath
55. U. Boscain and F. Rossi, “Invariant Carnot–Caratheodory metrics on S^3, \operatorname{SO}(3), \operatorname{SL}(2) and lens spaces”, SIAM J. Control Optim., 47:4 (2008), 1851–1878  crossref  mathscinet  zmath
56. R. W. Brockett and L. Dai, “Non-holonomic kinematics and the role of elliptic functions in constructive controllability”, Nonholonomic motion planning, Kluwer Int. Ser. Eng. Comput. Sci., 192, Kluwer Acad. Publ., Boston, MA, 1993, 1–21  crossref  zmath
57. H. Busemann, “The isoperimetric problem in the Minkowski plane”, Amer. J. Math., 69:4 (1947), 863–871  crossref  mathscinet  zmath
58. Y. A. Butt, Yu. L. Sachkov, and A. I. Bhatti, “Extremal trajectories and Maxwell strata in sub-Riemannian problem on group of motions of pseudo-Euclidean plane”, J. Dyn. Control Syst., 20:3 (2014), 341–364  crossref  mathscinet  zmath
59. Y. A. Butt, Yu. L. Sachkov, and A. I. Bhatti, “Maxwell strata and conjugate points in the sub-Riemannian problem on the Lie group \operatorname{SH}(2)”, J. Dyn. Control Syst., 22:4 (2016), 747–770  crossref  mathscinet  zmath
60. Y. A. Butt, Yu. L. Sachkov, and A. I. Bhatti, “Cut locus and optimal synthesis in sub-Riemannian problem on the Lie group \operatorname{SH}(2)”, J. Dyn. Control Syst., 23:1 (2017), 155–195  crossref  mathscinet  zmath
61. Q. Cai, T. Huang, Yu. L. Sachkov, and X. Yang, “Geodesics in the Engel group with a sub-Lorentzian metric”, J. Dyn. Control Syst., 22:3 (2016), 465–484  crossref  mathscinet  zmath
62. E. Cartan, “Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre”, Ann. Sci. École Norm. Sup. (3), 27 (1910), 109–192  crossref  mathscinet  zmath
63. Y. Chitour, F. Jean, and R. Long, “A global steering method for nonholonomic systems”, J. Differential Equations, 254:4 (2013), 1903–1956  crossref  mathscinet  zmath
64. G. Citti and A. Sarti, “A cortical based model of perceptual completion in the roto-translation space”, J. Math. Imaging Vision, 24:3 (2006), 307–326  crossref  mathscinet  zmath
65. L. van den Dries, A. Macintyre, and D. Marker, “The elementary theory of restricted analytic fields with exponentiation”, Ann. of Math. (2), 140:1 (1994), 183–205  crossref  mathscinet  zmath
66. R. Duits, U. Boscain, F. Rossi, and Y. L. Sachkov, “Association fields via cuspless sub-Riemannian geodesics in \operatorname{SE}(2)”, J. Math. Imaging Vision, 49:2 (2014), 384–417  crossref  mathscinet  zmath
67. R. Duits, M. Felsberg, G. Granlund, and B. H. Romeny, “Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the Euclidean motion group”, Int. J. Comput. Vis., 72:1 (2007), 79–102  crossref
68. R. Duits, A. Ghosh, T. C. J. Dela Haije, and A. Mashtakov, “On sub-Riemannian geodesics in \operatorname{SE}(3) whose spatial projections do not have cusps”, J. Dyn. Control Syst., 22:4 (2016), 771–805  crossref  mathscinet  zmath
69. M. S. El Naschie, “Thermal initial post buckling of the extensional elastica”, Int. J. Mech. Sci., 18:6 (1976), 321–324  crossref
70. L. Euler, “De curvis elasticis”, Additamentum I, Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti, M.-M. Bousquet, Lausanne–Geneva, 1744, 245–310; English transl. “Leonhard Euler's elastic curves”, Isis, 20:1 (1933), 72–160
71. C. Fernandes, L. Gurvits, and Z. X. Li, “A variational approach to optimal nonholonomic motion planning”, Proceedings. 1991 IEEE international conference on robotics and automation (Sacramento, CA 1991), v. 1, IEEE, 1991, 680–685  crossref
72. B. Franceschiello, A. Mashtakov, G. Citti, and A. Sarti, “Modelling of the Poggendorff illusion via sub-Riemannian geodesics in the roto-translation group”, New trends in image analysis and processing–ICIAP 2017, Lecture Notes in Comput. Sci., 10590, Springer, Cham, 2017, 37–47  crossref  mathscinet
73. B. Franceschiello, A. Mashtakov, G. Citti, and A. Sarti, “Geometrical optical illusion via sub-Riemannian geodesics in the roto-translation group”, Differential Geom. Appl., 65 (2019), 55–77  crossref  mathscinet  zmath
74. E. Franken and R. Duits, “Crossing-preserving coherence-enhancing diffusion on invertible orientation scores”, Int. J. Comput. Vis., 85:3 (2009), 253–278  crossref
75. R. Frisch-Fay, Flexible bars, Butterworths and Co., London, 1962, vii+220 pp.  zmath
76. N. J. Glassmaker and C. Y. Hui, “Elastica solution for a nanotube formed by self-adhesion of a folded thin film”, J. Appl. Phys., 96:6 (2004), 3429–3434  crossref  adsnasa
77. C. Golé and R. Karidi, “A note on Carnot geodesics in nilpotent Lie groups”, J. Dyn. Control Syst., 1:4 (1995), 535–549  crossref  mathscinet  zmath
78. A. G. Greenhill, The applications of elliptic functions, Macmillan, London–New York, 1892, xi+357 pp.  mathscinet  zmath
79. P. A. Griffiths, Exterior differential systems and the calculus of variations, Progr. Math., 25, Birkhäuser, Boston, MA, 1983, ix+335 pp.  crossref  mathscinet  zmath
80. M. Grochowski, “Reachable sets for the Heisenberg sub-Lorentzian metric on \mathbb{R}^3. An estimate for the distance function”, J. Dyn. Control Syst., 12:2 (2006), 145–160  crossref  mathscinet  zmath
81. M. Gromov, “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 79–323  crossref  mathscinet  zmath
82. E. Grong and A. Vasil'ev, “Sub-Riemannian and sub-Lorentzian geometry on \operatorname{SU}(1,1) and on its universal cover”, J. Geom. Mech., 3:2 (2011), 225–260  crossref  mathscinet  zmath
83. J. M. Hammersley, “Oxford commemoration ball”, Probability, statistics and analysis, London Math. Soc. Lecture Note Ser., 79, Cambridge Univ. Press, Cambridge–New York, 1983, 112–142  crossref  mathscinet  zmath
84. G. H. M. van der Heijden, S. Neukirch, V. G. A. Goss, and J. M. T. Thompson, “Instability and self-contact phenomena in the writhing of clamped rods”, Int. J. Mech. Sci., 45 (2003), 161–196  crossref  zmath
85. H. Hermes, “Nilpotent and high-order approximations of vector field systems”, SIAM Rev., 33:2 (1991), 238–264  crossref  mathscinet  zmath
86. V. Jurdjevic, “The geometry of the plate-ball problem”, Arch. Rational Mech. Anal., 124:4 (1993), 305–328  crossref  mathscinet  zmath  adsnasa
87. V. Jurdjevic, “Non-Euclidean elastica”, Amer. J. Math., 117:1 (1995), 93–124  crossref  mathscinet  zmath
88. V. Jurdjevic, Geometric control theory, Cambridge Stud. Adv. Math., 52, Cambridge Univ. Press, Cambridge, 1997, xviii+492 pp.  crossref  mathscinet  zmath
89. V. Jurdjevic, Optimal control and geometry: integrable systems, Cambridge Stud. Adv. Math., 154, Cambridge Univ. Press, Cambridge, 2016, xx+415 pp.  crossref  mathscinet  zmath
90. P. V. Kharlamov, “A critique of some mathematical models of mechanical systems with differential constraints”, Prikl. Mat. Mech., 56:4 (1992), 683–692  mathscinet  zmath; English transl. in J. Appl. Math. Mech., 56:4 (1992), 584–594  crossref  adsnasa
91. A. Korolko and I. Markina, “Nonholonomic Lorentzian geometry on some \mathbb H-type groups”, J. Geom. Anal., 19:4 (2009), 864–889  crossref  mathscinet  zmath
92. V. V. Kozlov, “Dynamics of systems with nonintegrable constraints. I”, Vestn. Moskov. Univ. Ser. 1 Mat. Mekh., 1982, no. 3, 92–100  mathnet  mathscinet  zmath; II, 1982, № 4, 70–76  mathnet  mathscinet  zmath; III, 1983, № 3, 102–111  mathnet  mathscinet  zmath; English transl. in I, Moscow Univ. Mech. Bull., 37:3-4 (1982), 27–34; II, 37:3-4 (1982), 74–80; III, 38:3 (1983), 40–51
93. V. V. Kozlov, “Realization of nonintegrable constraints in classical mechanics”, Dokl. Akad. Nauk SSSR, 272:3 (1983), 550–554  mathnet  mathscinet  zmath; English transl. in Soviet Phys. Dokl., 28:9 (1983), 735–737
94. G. Lafferriere and H. J. Sussmann, “A differential geometric approach to motion planning”, Nonholonomic motion planning, Kluwer Int. Ser. Eng. Comput. Sci., 192, Kluwer Acad. Publ., Boston, MA, 1993, 235–270  crossref  zmath
95. H. Lamb, Hydrodynamics, 6th ed., Cambridge Univ. Press, Cambridge, 1932, xv+738 pp.  mathscinet  zmath
96. T. J. Lardner, “A note on the elastica with large loads”, Internat. J. Solids Structures, 21:1 (1985), 21–26  crossref  mathscinet
97. J. P. Laumond, Nonholonomic motion planning for mobile robots, Preprint no. 98211, LAAS-CNRS, Toulouse, 1998
98. D. F. Lawden, Elliptic functions and applications, Appl. Math. Sci., 80, Springer-Verlag, New York, 1989, xiv+334 pp.  crossref  mathscinet  zmath
99. R. Levien, The elastica: a mathematical history, Tech. rep. no. UCB/EECS-2008-103, Univ. of California, Berkeley, 2008, 25 pp. https://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-103.html
100. Z. Li and J. Canny, “Motion of two rigid bodies with rolling constraint”, IEEE Trans. Robot. Automat., 6:1 (1990), 62–72  crossref
101. J.-M. Lion and J.-P. Rolin, “Théorème de préparation pur les fonctions logarithmico-exponentielles”, Ann. Inst. Fourier (Grenoble), 47:3 (1997), 859–884  crossref  mathscinet  zmath
102. L. V. Lokutsievskiy, “Convex trigonometry with applications to sub-Finsler geometry”, Mat. Sb., 210:8 (2019), 120–148  mathnet  crossref  mathscinet  zmath; English transl. in Sb. Math., 210:8 (2019), 1179–1205  crossref  adsnasa
103. L. V. Lokutsievskii and Yu. L. Sachkov, “Liouville nonintegrability of sub-Riemannian problems on free Carnot groups of step 4”, Dokl. Ross. Akad. Nauk, 474:1 (2017), 19–21  mathnet  crossref  mathscinet  zmath; English transl. in Dokl. Math., 95:3 (2017), 211–213  crossref
104. L. V. Lokutsievskiy and Yu. L. Sachkov, “Liouville integrability of sub-Riemannian problems on Carnot groups of step 4 or greater”, Mat. Sb., 209:5 (2018), 74–119  mathnet  crossref  mathscinet  zmath; English transl. in Sb. Math., 209:5 (2018), 672–713  crossref  adsnasa
105. A. E. H. Love, A treatise on the mathematical theory of elasticity, 4th ed., Cambridge Univ. Press, Cambridge, 1927, xviii+643 pp.  mathscinet  zmath
106. R. S. Manning, J. H. Maddocks, and J. D. Kahn, “A continuum rod model of sequence-dependent DNA structure”, J. Chem. Phys., 105:13 (1996), 5626–5646  crossref  adsnasa
107. R. S. Manning, K. A. Rogers, and J. H. Maddocks, “Isoperimetric conjugate points with application to the stability of DNA minicircles”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454:1980 (1998), 3047–3074  crossref  mathscinet  zmath  adsnasa
108. A. Marigo and A. Bicchi, “Rolling bodies with regular surface: the holonomic case”, Differential geometry and control (Boulder, CO 1997), Proc. Sympos. Pure Math., 64, Amer. Math. Soc., Providence, RI, 1999, 241–256  crossref  mathscinet  zmath
109. A. P. Mashtakov, “Algorithms and software for the solution of a constructive control problem using non-holonomic five-dimensional systems”, Program. Sistemy Teor. Prilozhen., 3:1 (2012), 3–29 (Russian)  mathnet
110. A. P. Mashtakov, A. A. Ardentov, and Yu. L. Sachkov, “Parallel algorithm and software for image inpainting via sub-Riemannian minimizers on the group of rototranslations”, Numer. Math. Theory Methods Appl., 6:1 (2013), 95–115  crossref  mathscinet  zmath
111. A. Mashtakov, A. Ardentov, and Yu. L. Sachkov, “Relation between Euler's elasticae and sub-Riemannian geodesics on \operatorname{SE}(2)”, Regul. Chaotic Dyn., 21:7-8 (2016), 832–839  mathnet  crossref  mathscinet  zmath  adsnasa
112. A. P. Mashtakov, R. Duits, Yu. L. Sachkov, E. Bekkers, and I. Yu. Beschastnyi, “Sub-Riemannian geodesics in \operatorname{SO}(3) with application to vessel tracking in spherical images of retina”, Dokl. Ross. Akad. Nauk, 473:5 (2017), 521–524  crossref  mathscinet  zmath; English transl. in Dokl. Math., 95:2 (2017), 168–171  crossref
113. A. Mashtakov, R. Duits, Yu. Sachkov, E. J. Bekkers, and I. Beschastnyi, “Tracking of lines in spherical images via sub-Riemannian geodesics in \operatorname{SO}(3)”, J. Math. Imaging Vision, 58:2 (2017), 239–264  crossref  mathscinet  zmath
114. A. P. Mashtakov and Yu. L. Sachkov, “Extremal trajectories and the asymptotics of the Maxwell time in the problem of the optimal rolling of a sphere on a plane”, Mat. Sb., 202:9 (2011), 97–120  mathnet  crossref  mathscinet  zmath; English transl. in Sb. Math., 202:9 (2011), 1347–1371  crossref  adsnasa
115. Y. Mikata, “Complete solution of elastica for a clamped-hinged beam, and its applications to a carbon nanotube”, Acta Mech., 190:4 (2007), 133–150  crossref  zmath
116. I. Moiseev and Yu. L. Sachkov, “Maxwell strata in sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:2 (2010), 380–399  crossref  mathscinet  zmath
117. D. Mumford, “Elastica and computer vision”, Algebraic geometry and its applications (West Lafayette, IN 1990), Springer, New York, 1994, 491–506  crossref  mathscinet  zmath
118. R. M. Murray, “Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems”, Math. Control Signals Systems, 7:1 (1994), 58–75  crossref  mathscinet  zmath; CDS Tech. Rep. 92-002, Univ. of California, Berkeley, 1992, 19 pp. http://www.cds.caltech.edu/~murray/papers/1992i_mur92-cds.html
119. D. E. Panayotounakos and P. S. Theocaris, “Analytic solutions for nonlinear differential equations describing the elastica of straight bars: theory”, J. Franklin Inst., 325:5 (1988), 621–633  crossref  mathscinet  zmath
120. J. Petitot, “The neurogeometry of pinwheels as a sub-Riemannian contact structure”, J. Physiol. Paris, 97:2-3 (2003), 265–309  crossref
121. J. Petitot, Neurogéométrie de la vision. Modèles mathématiques et physiques des architectures fonctionnelles, Éditions de l'École Polytechnique, Palaiseau, 2008, 419 pp.  mathscinet
122. L. Saalschütz, Der belastete Stab unter Einwirkung einer seitlichen Kraft, B. G. Teubner, Leipzig, 1880, 280 pp.  zmath
123. Yu. L. Sachkov, “Exponential map in the generalized Dido problem”, Mat. Sb., 194:9 (2003), 63–90  mathnet  crossref  mathscinet  zmath; English transl. in Sb. Math., 194:9 (2003), 1331–1359  crossref  adsnasa
124. Yu. L. Sachkov, “Symmetries of flat rank two distributions and sub-Riemannian structures”, Trans. Amer. Math. Soc., 356:2 (2004), 457–494  crossref  mathscinet  zmath
125. Yu. L. Sachkov, “Discrete symmetries in the generalized Dido problem”, Mat. Sb., 197:2 (2006), 95–116  mathnet  crossref  mathscinet  zmath; English transl. in Sb. Math., 197:2 (2006), 235–257  crossref  adsnasa
126. Yu. L. Sachkov, “The Maxwell set in the generalized Dido problem”, Mat. Sb., 197:4 (2006), 123–150  mathnet  crossref  mathscinet  zmath; English transl. in Sb. Math., 197:4 (2006), 595–621  crossref  adsnasa
127. Yu. L. Sachkov, “Complete description of the Maxwell strata in the generalized Dido problem”, Mat. Sb., 197:6 (2006), 111–160  mathnet  crossref  mathscinet  zmath; English transl. in Sb. Math., 197:6 (2006), 901–950  crossref  adsnasa
128. Yu. L. Sachkov, “Control theory on Lie groups”, Optimal control, Sovr. Mat. Fund. Napravl., 27, RUDN University, Moscow, 2008, 5–59  mathnet  mathscinet  zmath; English transl. in J. Math. Sci. (N. Y.), 156:3 (2009), 381–439  crossref
129. Yu. L. Sachkov, “Optimality of Euler's elasticae”, Dokl. Ross. Akad. Nauk, 417:1 (2007), 23–25  mathnet  mathscinet  zmath; English transl. in Dokl. Math., 76:3 (2007), 817–819  crossref
130. Yu. L. Sachkov, “Maxwell strata in Euler elastic problem”, J. Dyn. Control Syst., 14:2 (2008), 169–234  crossref  mathscinet  zmath
131. Yu. L. Sachkov, “Conjugate points in Euler elastic problem”, J. Dyn. Control Syst., 14:3 (2008), 409–439  crossref  mathscinet  zmath
132. Yu. L. Sachkov, “Maxwell strata and symmetries in the problem of optimal rolling of a sphere over a plane”, Mat. Sb., 201:7 (2010), 99–120  mathnet  crossref  zmath; English transl. in Sb. Math., 201:7 (2010), 1029–1051  crossref  mathscinet  adsnasa
133. Yu. L. Sachkov and S. V. Levyakov, “Stability of inflectional elasticae centered at vertices or inflection points”, Differential equations and topology. II, Tr. Mat. Inst. Steklova, 271, MAIK Nauka/Interperiodika, Moscow, 2010, 187–203  mathnet  mathscinet  zmath; English transl. in Proc. Steklov Inst. Math., 271 (2010), 177–192  crossref
134. Yu. L. Sachkov, “Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:4 (2010), 1018–1039  crossref  mathscinet  zmath
135. Yu. L. Sachkov, “Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 17:2 (2011), 293–321  crossref  mathscinet  zmath
136. Yu. L. Sachkov, “Closed Euler elasticae”, Differential equations and dynamical systems, Tr. mat. Inst. Steklova, 278, MAIK Nauka/Interperiodika, Moscow, 2012, 227–241  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 278 (2012), 218–232  crossref
137. Yu. L. Sachkov and E. F. Sachkova, “Exponential mapping in Euler's elastic problem”, J. Dyn. Control Syst., 20:4 (2014), 443–464  crossref  mathscinet  zmath
138. Yu. L. Sachkov, “Optimal bang-bang trajectories in sub-Finsler problem on the Cartan group”, Nelineinaya Dinamika, 14:4 (2018), 583–593  mathnet  crossref  mathscinet  zmath
139. Yu. L. Sachkov, “Periodic controls in step 2 strictly convex sub-Finsler problems”, Regul. Chaotic Dyn., 25:1 (2020), 33–39  mathnet  crossref  mathscinet  zmath  adsnasa
140. Yu. L. Sachkov, “Homogeneous sub-Riemannian geodesics on a group of motions of the plane”, Differ. Uravn., 57:11 (2021), 1568–1572  crossref  mathscinet  zmath; English transl. in Differ. Equ., 57:11 (2021), 1550–1554  crossref
141. Yu. L. Sachkov, “Conjugate time in the sub-Riemannian problem on the Cartan group”, J. Dyn. Control Syst., 27:4 (2021), я709–751  crossref  mathscinet  zmath
142. Yu. L. Sachkov, Introduction to geometric control, URSS, Moscow, 2021, 160 pp.; augmented English transl. Springer Optim. Appl., 192, Springer, Cham, 2022, xvii+162 pp.  crossref  mathscinet  zmath
143. Yu. L. Sachkov, “Left-invariant optimal control problems on Lie groups: classification and problems integrable by elementary functions”, Uspekhi Mat. Nauk, 77:1(463) (2022), 109–176  mathnet  crossref  mathscinet  zmath; English transl. in Russian Math. Surveys, 77:1 (2022), 99–163  crossref  adsnasa
144. Yu. L. Sachkov, “Sub-Riemannian Cartan sphere”, Dokl. Ross. Akad. Nauk Mat. Informat. Prots. Upravl., 507 (2022), 66–70 (Russian)  crossref
145. Yu. L. Sachkov, “Sub-Riemannian Siegel sphere”, Dokl. Ross. Akad. Nauk Mat. Informat. Prots. Upravl., 500 (2021), 97–101  mathnet  crossref  zmath; English transl. in Dokl. Math., 104:2 (2021), 301–305  crossref  mathscinet
146. Yu. L. Sachkov and E. F. Sachkova, “Degenerate abnormal trajectories in a sub-Riemannian problem with growth vector (2, 3, 5, 8)”, Differ. Uravn., 53:3 (2017), 362–374  mathnet  crossref  zmath; English transl. in Differ. Equ., 53:3 (2017), 352–365  crossref  mathscinet
147. Yu. L. Sachkov and E. F. Sachkova, “Sub-Lorentzian problem on the Heisenberg group”, Mat. Zametki, 113:1 (2023), 154–157  mathnet  crossref; English transl. in Math. Notes, 113:1 (2023), 160–163  crossref
148. P. Seide, “Large deflections of a simply supported beam subjected to moment at one end”, J. Appl. Mech., 51:3 (1984), 519–525  crossref  adsnasa
149. I. H. Stampouloglou, E. E. Theotokoglou, and P. N. Andriotaki, “Asymptotic solutions to the non-linear cantilever elastica”, Internat. J. Non-Linear Mech., 40:10 (2005), 1252–1262  crossref  mathscinet  zmath  adsnasa
150. G. Stefani, “Polynomial approximations to control systems and local controllability”, 1985 24th IEEE conference on decision and control (Fort Lauderdale, FL 1985), IEEE, 1985, 33–38  crossref
151. T. Tang and N. J. Glassmaker, “On the inextensible elastica model for the collapse of nanotubes”, Math. Mech. Solids, 15:5 (2010), 591–606  crossref  zmath
152. D. Tilbury, R. M. Murray, and S. S. Sastry, “Trajectory generation for the N-trailer problem using Goursat normal form”, IEEE Trans. Automat. Control, 40:5 (1995), 802–819  crossref  mathscinet  zmath
153. S. P. Timoshenko, History of strength of materials, McGraw-Hill Book Co., Inc., New York–Toronto–London, 1953, x+452 pp.  mathscinet  zmath
154. C. Truesdell, “The influence of elasticity on analysis: the classic heritage”, Bull. Amer. Math. Soc. (N. S.), 9:3 (1983), 293–310  crossref  mathscinet  zmath
155. M. Vendittelli, G. Oriolo, and J.-P. Laumond, “Steering nonholonomic systems via nilpotent approximations: the general two-trailer system”, Proceedings 1999 IEEE international conference on robotics and automation (Detroit, MI 1999), v. 1, IEEE, 1999, 823–829  crossref
156. M. Venditelli, G. Oriolo, F. Jean, and J.-P. Laumond, “Nonhomogeneous nilpotent approximations for nonholonomic systems with singularities”, IEEE Trans. Automat. Control, 49:2 (2004), 261–266  crossref  mathscinet  zmath
157. A. M. Vershik and V. Ya. Gershkovich, “Nonholonomic dynamical systems, geometry of distributions and variational problems”, Dynamical systems, 3, Sovr. Probl. mat. Fund. Napavl., 16, VINITI, Moscow, 1987, 5–85  mathnet  mathscinet  zmath; English transl. in Dynamical systems VII, Encyclopaedia Math. Sci., 16, Springer, Berlin, 1994, 1–81  crossref  mathscinet
158. A. M. Vershik and O. A. Granichina, “Reduction of nonholonomic variation problems to isoperimetric ones and connections in principal bundles”, Mat. Zametki, 49:5 (1991), 37–44  mathnet  mathscinet  zmath; English transl. in Math. Notes, 49:5 (1991), 467–472  crossref
159. N. Ja. Vilenkin, Special functions and the theory of group representations, Nauka, Moscow, 1965, 588 pp.  mathscinet  zmath; English transl. Transl. Math. Monogr., 22, Amer. Math. Soc., Providence, RI, 1968, x+613 pp.  mathscinet  zmath
160. G. C. Walsh, R. Montgomery, and S. S. Sastry, “Optimal path planning on matrix Lie groups”, Proceedings of 1994 33rd IEEE conference on decision and control (Lake Buena Vista, FL 1994), v. 2, IEEE, 1994, 1258–1263  crossref
161. C. Y. Wang, “Post-buckling of a clamped-simply supported elastica”, Internat. J. Non-Linear Mech., 32:6 (1997), 1115–1122  crossref  zmath
162. E. T. Whittaker and G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, 4th ed., Cambridge Univ. Press, Cambridge, 1927, vi+608 pp.  mathscinet  zmath

Citation: Yu. L. Sachkov, “Left-invariant optimal control problems on Lie groups that are integrable by elliptic functions”, Russian Math. Surveys, 78:1 (2023), 65–163
Citation in format AMSBIB
\Bibitem{Sac23}
\by Yu.~L.~Sachkov
\paper Left-invariant optimal control problems on Lie groups that are integrable by elliptic functions
\jour Russian Math. Surveys
\yr 2023
\vol 78
\issue 1
\pages 65--163
\mathnet{http://mi.mathnet.ru/eng/rm10063}
\crossref{https://doi.org/10.4213/rm10063e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4634796}
\zmath{https://zbmath.org/?q=an:1530.53004}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023RuMaS..78...65S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001057003200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85163991145}
Linking options:
  • https://www.mathnet.ru/eng/rm10063
  • https://doi.org/10.4213/rm10063e
  • https://www.mathnet.ru/eng/rm/v78/i1/p67
  • This publication is cited in the following 5 articles:
    1. Yuriǐ G. Nikonorov, Irina A. Zubareva, “On the behavior of geodesics of left-invariant sub-Riemannian metrics on the group \operatorname{Aff}_{0}(\mathbb{R}) \times \operatorname{Aff}_{0}(\mathbb{R}) ”, era, 33:1 (2025), 181  crossref
    2. Yu. L. Sachkov, “Sub-Lorentzian Geometry on the Martinet Distribution”, Dokl. Math., 2024  crossref
    3. Yu. L. Sachkov, “Sub-Lorentzian geometry on the Martinet distribution”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 517:1 (2024), 38  crossref
    4. D. N. Stepanov, A. V. Podobryaev, “Numerical Solution of a Left-Invariant Sub-Riemannian Problem on the Group SO(3)”, Rus. J. Nonlin. Dyn., 20:4 (2024), 635–670  mathnet  crossref
    5. Alexey Mashtakov, Yuri Sachkov, “Time-optimal problem in the roto-translation group with admissible control in a circular sector”, Mathematics, 11:18 (2023), 3931  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:791
    Russian version PDF:112
    English version PDF:119
    Russian version HTML:553
    English version HTML:241
    References:57
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025