Russian Chemical Reviews
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Usp. Khim.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Chemical Reviews, 2021, Volume 90, Issue 6, Pages 750–784
DOI: https://doi.org/10.1070/RCR5018
(Mi rcr4350)
 

This article is cited in 52 scientific papers (total in 52 papers)

Furan monomers and polymers from renewable plant biomass

V. P. Kashparovaa, D. V. Chernyshevaa, V. A. Klushina, V. E. Andreevaa, O. A. Kravchenkob, N. V. Smirnovaa

a South-Russian State Polytechnic University named M. I. Platov, Novocherkassk
b Tula State University
Abstract: Plant biomass is considered the main source of renewable carbon raw materials, which is a viable alternative to crude oil and natural gas and provides compounds with a low carbon footprint. The most promising direction for the conversion of biomass is the synthesis of 5-hydroxymethylfurfural, which is regarded as a platform chemical, the basis for the synthesis of valuable compounds, including monomers and polymers. The move of the polymer industry to renewable plant materials will contribute to solving global environmental problems and ensure the sustainability and environmental safety of plastics production. This review analyzes recent advances in the preparation of key C6-furan platform chemicals, such as 5-hydroxymethylfurfural, 2,5-furandicarboxylic acid, 2,5-diformylfuran, 2,5-bis(hydroxymethyl)furan, levulinic acid, and their use for the production of monomers and polymers based on renewable plant biomass. Production processes of widely known furan polyesters and polyamides, such as polyethylene-, polypropylene-, polybutylene furanoates, polyhexamethylene furanamide, are considered, as well as developments towards novel promising materials that are furan copolymers and polymer mixtures. For the first time, studies have been systematized aimed at converting liquid and solid wastes of the synthesis of platform chemicals, known as humins, into a range of value-added products, including organic compounds, porous carbon materials, thermosetting binders, and anticorrosive coatings that can replace similar materials based on fossil raw materials. Economic and environmental prospects and problems of production and consumption of furan polymers are considered.
The bibliography includes 275 references.
Keywords: renewable plant biomass, biomass, platform chemicals, monomers, polymers, polyethylene furanoate, humins, circular economy.
Funding agency Grant number
Russian Science Foundation 21-13-00177
Received: 15.03.2021
Bibliographic databases:
Document Type: Article
Language: English
Original paper language: Russian
Citation: V. P. Kashparova, D. V. Chernysheva, V. A. Klushin, V. E. Andreeva, O. A. Kravchenko, N. V. Smirnova, “Furan monomers and polymers from renewable plant biomass”, Russian Chem. Reviews, 90:6 (2021), 750–784
Citation in format AMSBIB
\Bibitem{KasCheKlu21}
\by V.~P.~Kashparova, D.~V.~Chernysheva, V.~A.~Klushin, V.~E.~Andreeva, O.~A.~Kravchenko, N.~V.~Smirnova
\paper Furan monomers and polymers from renewable plant biomass
\jour Russian Chem. Reviews
\yr 2021
\vol 90
\issue 6
\pages 750--784
\mathnet{http://mi.mathnet.ru/eng/rcr4350}
\crossref{https://doi.org/10.1070/RCR5018}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021RuCRv..90..750K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000697214600005}
\elib{https://elibrary.ru/item.asp?id=46896300}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85110478467}
Linking options:
  • https://www.mathnet.ru/eng/rcr4350
  • https://doi.org/10.1070/RCR5018
  • https://www.mathnet.ru/eng/rcr/v90/i6/p750
  • This publication is cited in the following 52 articles:
    1. Sami Zaidi, Ibrahim O. Althobaiti, Ghada Bousselmi, Majdi Abid, Souhir Abid, Abdelkader Bougarech, Journal of Macromolecular Science, Part A, 2025, 1  crossref
    2. Leonid I. Belen'kii, Galina A. Gazieva, Yulia B. Evdokimenkova, Natalya O. Soboleva, Advances in Heterocyclic Chemistry, 142, 2024, 139  crossref
    3. Simone Naddeo, Davide Gentile, Fatima Margani, Gea Prioglio, Federica Magaletti, Maurizio Galimberti, Vincenzina Barbera, Molecules, 29:4 (2024), 861  crossref
    4. Tobias Esser, André Wassenberg, Jan-Christian Raabe, Dorothea Voß, Jakob Albert, ACS Sustainable Chem. Eng., 12:1 (2024), 543  crossref
    5. Austine Ofondu Chinomso Iroegbu, Suprakas Sinha Ray, Journal of Polymer Science, 62:6 (2024), 1044  crossref
    6. Tobias Esser, André Wassenberg, Dorothea Voß, Jakob Albert, React. Chem. Eng., 2024  crossref
    7. Taoguang Qu, Kevin N. West, Paul A. Rupar, European Polymer Journal, 207 (2024), 112808  crossref
    8. Soumen Biswas, Prakash Kannaboina, Mukund P. Sibi, Synthesis, 2024  crossref
    9. Harpreet Kaur Channi, Plant Biomass Applications, 2024, 427  crossref
    10. A. A. Belmesov, L. V. Shmygleva, A. A. Baranov, A. V. Levchenko, Russian Chem. Reviews, 93:6 (2024), RCR5121  mathnet  mathnet  crossref
    11. Zhenchuang Xu, Lauren Chua, Avni Singhal, Pranav Krishnan, Jacob J. Lessard, Benjamin A. Suslick, Valerie Chen, Nancy R. Sottos, Rafael Gomez‐Bombarelli, Jeffrey S. Moore, Advanced Materials, 2024  crossref
    12. Gabriel Iago dos Santos, Caroline Gaglieri, Rafael Turra Alarcon, Raquel Magri, Matthias Hartlieb, Gilbert Bannach, J Polym Environ, 2024  crossref
    13. Leipeng Liu, Yuanduo Duan, Haochen Yun, Xiaofei Chen, Jingang Liu, Shenghua Lv, Yuehong Zhang, Industrial Crops and Products, 220 (2024), 119239  crossref
    14. Sami Zaidi, Rania Triki, Abdoul Salam Bt Bah, Abdelkader Bougarech, Majdi Abid, Souhir Abid, International Journal of Polymer Analysis and Characterization, 29:5 (2024), 316  crossref
    15. Oumayma Challouf, Sami Zaidi, Abdelkader Bougarech, Majdi Abid, Tobias Robert, Houcine Ammar, Souhir Abid, Polymer, 312 (2024), 127577  crossref
    16. Jorge Bueno Morón, Federica Arbore, Gerard P. M. van Klink, Mark Mascal, Gert‐Jan M. Gruter, ChemSusChem, 2024  crossref
    17. Daria V. Chernysheva, Victor A. Klushin, Anastasia A. Alekseenko, Elizaveta A. Moguchikh, Evgeny A. Kolesnikov, Mikhail V. Gorshenkov, Vasily V. Kaichev, Lev N. Fesenko, Nina V. Smirnova, Mendeleev Communications, 34:5 (2024), 725  crossref
    18. Konstantin O. Titov, Artem N. Sinelnikov, Evgeniia P. Antoshkina, Ulyana I. Zaretskaya, Andrey K. Ratnikov, Ekaterina A. Khakina, Teimur M. Aliev, Mendeleev Communications, 34:5 (2024), 729  crossref
    19. Luan Moreira Grilo, Sara Faoro, Rudy Folkersma, Talita Martins Lacerda, Laura Mazzocchetti, Katja Loos, Dina Maniar, ACS Appl. Polym. Mater., 2024  crossref
    20. K. E. Shepelenko, I. G. Gnatiuk, V. M. Chernyshev, Russ J Gen Chem, 94:10 (2024), 2586  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Uspekhi Khimii Uspekhi Khimii
    Statistics & downloads:
    Abstract page:133
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025