Abstract:
Representative examples of the application of 3D printing in organic synthesis, biochemistry, biotechnology, analytical chemistry, pharmaceutics and chemical education are considered. It is shown that additive technologies open up new prospects for the development of these fields of science. The characteristics of widely used 3D printing methods (fused deposition modelling and stereolithography) are discussed in the context of chemical applications. It is noted that the key feature of these methods is the wide accessibility of technologies and materials.
The bibliography includes 498 references.
Keywords:
3D printing, additive technologies, digital manufacturing, FDM method, stereolithography, polymer materials, organic synthesis, chemical reactors.
Received: 14.07.2020
Bibliographic databases:
Document Type:
Article
Language: English
Original paper language: Russian
Citation:
E. G. Gordeev, V. P. Ananikov, “Widely accessible 3D printing technologies in chemistry, biochemistry and pharmaceutics: applications, materials and prospects”, Russian Chem. Reviews, 89:12 (2020), 1507–1561
\Bibitem{GorAna20}
\by E.~G.~Gordeev, V.~P.~Ananikov
\paper Widely accessible 3D printing technologies in chemistry, biochemistry and pharmaceutics: applications, materials and prospects
\jour Russian Chem. Reviews
\yr 2020
\vol 89
\issue 12
\pages 1507--1561
\mathnet{http://mi.mathnet.ru/eng/rcr4324}
\crossref{https://doi.org/10.1070/RCR4980}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020RuCRv..89.1507G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000604750000005}
\elib{https://elibrary.ru/item.asp?id=44973832}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100086152}
Linking options:
https://www.mathnet.ru/eng/rcr4324
https://doi.org/10.1070/RCR4980
https://www.mathnet.ru/eng/rcr/v89/i12/p1507
This publication is cited in the following 39 articles:
Andrey N. Lebedev, Konstantin S. Rodygin, Svetlana A. Vakhrusheva, Valentine P. Ananikov, Green Chem., 26:7 (2024), 3776
A. Altahla, D. Alomar, L. I. Musin, R. M. Akhmadullin, I. S. Antipin, Russ J Gen Chem, 94:1 (2024), 55
Victoria A. Korabelnikova, Yulia V. Gyrdymova, Evgeniy G. Gordeev, Anton N. Potorochenko, Konstantin S. Rodygin, Valentine P. Ananikov, React. Chem. Eng., 2024
A. A. Potapov, V. M. Volgin, A. P. Malakho, I. V. Gnidina, Russian Chem. Reviews, 93:9 (2024), RCR5127
Aychew Mekuriaw Tegegne, Kassahun Dires Ayenew, Muluken Nigatu Selam, Elena Baralla, BioMed Research International, 2024:1 (2024)
N. V. Vishnyova, A. N. Lanina, A. G. Tyurin, N. V. Kalakutsky, O. Y. Petropavlovskaya, S. I. Kutukova, A. I. Yaremenko, Parodontologiâ, 29:3 (2024), 349
M. P. Egorov, V. P. Ananikov, E. G. Baskir, S. E. Boganov, V. I. Bogdan, A. N. Vereshchagin, V. A. Vil', I. L. Dalinger, A. D. Dilman, O. L. Eliseev, S. G. Zlotin, E. A. Knyazeva, V. M. Kogan, L. O. Kononov, M. M. Krayushkin, V. B. Krylov, L. M. Kustov, V. V. Levin, B. V. Lichitsky, M. G. Medvedev, N. E. Nifantiev, O. A. Rakitin, A. M. Sakharov, I. V. Svitanko, G. A. Smirnov, A. Yu. Stakheev, M. A. Syroeshkin, A. O. Terent'ev, Yu. V. Tomilov, E. V. Tretyakov, I. V. Trushkov, L. L. Fershtat, V. A. Chaliy, V. Z. Shirinian, Russ Chem Bull, 73:9 (2024), 2423
D. I. Grachev, E. A. Chizhmakov, D. Yu. Stepanov, D. G. Buslovich, I. V. Khulaev, A. V. Deshev, L. G. Kirakosyan, A. S. Arutyunov, S. Yu. Kardanova, K. S. Panin, S. V. Panin, International Journal of Molecular Sciences, 24:7 (2023), 6432
A. N. Generalova, P. A. Demina, R. A. Akasov, E. V. Khaidukov, Russian Chem. Reviews, 92:2 (2023), RCR5068
E. A. Economou, S. Koltsakidis, I. Dalla, K. Tsongas, G. Em. Romanos, D. Tzetzis, P. Falaras, G. Theodorakopoulos, V. Middelkoop, T. Sfetsas, Materials, 16:13 (2023), 4826
K. S. Erokhin, S. A. Naumov, V. P. Ananikov, Russian Chem. Reviews, 92:11 (2023), RCR5103