Abstract:
This review focuses on physicochemical and nanotechnological approaches to the design of 'rigid' particles based on double-stranded DNA molecules. The physicochemical methods imply cross-linking of adjacent DNA molecules ordered in quasinematic layers of liquid-crystalline dispersion particles by synthetic nanobridges consisting of alternating molecules of an antibiotic (daunomycin) and divalent copper ions, as well as cross-linking of these molecules as a result of their salting-out in quasinematic layers of liquid-crystalline dispersion particles under the action of lanthanide cations. The nanotechnological approach is based on the insertion of gold nanoparticles into the free space between double-stranded DNA molecules that form quasinematic layers of liquid-crystalline dispersion particles. This gives rise to extended clusters of gold nanoparticles and is accompanied by an enhancement of the interaction between the DNA molecules through gold nanoparticles and by a decrease in the solubility of dispersion particles. These approaches produce integrated 'rigid' DNA-containing spatial structures, which are incompatible with the initial aqueous polymeric solutions and have unique properties.
The bibliography includes 116 references.
Received: 19.03.2014
Bibliographic databases:
Document Type:
Article
Language: English
Original paper language: Russian
Citation:
Yu. M. Evdokimov, V. I. Salyanov, S. G. Skuridin, E. V. Shtykova, N. G. Khlebtsov, E. I. Kats, “Physicochemical and nanotechnological approaches to the design of 'rigid' spatial structures of DNA”, Russian Chem. Reviews, 84:1 (2015), 27–42
\Bibitem{EvdSalSku15}
\by Yu.~M.~Evdokimov, V.~I.~Salyanov, S.~G.~Skuridin, E.~V.~Shtykova, N.~G.~Khlebtsov, E.~I.~Kats
\paper Physicochemical and nanotechnological approaches to the design of 'rigid' spatial structures of DNA
\jour Russian Chem. Reviews
\yr 2015
\vol 84
\issue 1
\pages 27--42
\mathnet{http://mi.mathnet.ru/eng/rcr4027}
\crossref{https://doi.org/10.1070/RCR4454}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000349382400003}
\elib{https://elibrary.ru/item.asp?id=22662156}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84922575878}
Linking options:
https://www.mathnet.ru/eng/rcr4027
https://doi.org/10.1070/RCR4454
https://www.mathnet.ru/eng/rcr/v84/i1/p27
This publication is cited in the following 10 articles:
M. A. Kolyvanova, M. A. Klimovich, E. M. Shishmakova, A. A. Markova, O. V. Dement'eva, V. M. Rudoy, V. A. Kuz'min, V. N. Morozov, Colloid J, 86:3 (2024), 396
M. A. Kolyvanova, M. A. Klimovich, O. V. Dement’eva, V. M. Rudoy, V. A. Kuzmin, A. V. Trofimov, V. N. Morozov, Russ. J. Phys. Chem. B, 17:1 (2023), 206
M. A. Klimovich, M. A. Kolyvanova, O. V. Dement'eva, O. N. Klimovich, V. M. Rudoy, V. A. Kuzmin, V. N. Morozov, Colloid J, 85:5 (2023), 703
Yevdokimov Yu.M., Skuridin S.G., Salyanov I V., Kats I E., Eur. Biophys. J. Biophys. Lett., 51:1 (2022), 85–94
Yevdokimov Yu.M., Skuridin S.G., Semenov V S., Salyanov I V., Kats I E., Liq. Cryst. Appl., 21:2 (2021), 54–72
Yu. Yevdokimov, S. Skuridin, V. Salyanov, S. Semenov, E. Kats, Crystals, 9:3 (2019), 162
Yu. M. Yevdokimov, V. I. Salyanov, S. G. Skuridin, Liq. Cryst. Appl., 17:4 (2017), 6–30
A. S. Kritchenkov, S. Andranovitš, Yu. A. Skorik, Russ. Chem. Rev., 86:3 (2017), 231–239
Yu. M. Yevdokimov, A. G. Pershina, V. I. Salyanov, A. A. Magaeva, V. I. Popenko, BIOPHYSICS, 60:3 (2015), 341