Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2007, Volume 12, Issue 4, Pages 365–388
DOI: https://doi.org/10.1134/S1560354707040028
(Mi rcd629)
 

This article is cited in 14 scientific papers (total in 14 papers)

Reduction of Almost Poisson Brackets for Nonholonomic Systems on Lie Groups

L. C. García-Naranjo

University of Arizona, Program in Applied Mathematics. 617 N Santa Rita, 85721 Tucson AZ, USA.
Citations (14)
Abstract: We present a systematic geometric construction of reduced almost Poisson brackets for nonholonomic systems on Lie groups with invariant kinetic energy metric and constraints. Our construction is of geometric interest in itself and is useful in the Hamiltonization of some classical examples of nonholonomic mechanical systems.
Keywords: nonholonomic systems, almost Poisson brackets, hamiltonization, geometric reduction.
Received: 14.06.2007
Accepted: 10.07.2007
Bibliographic databases:
Document Type: Article
Language: English
Citation: L. C. García-Naranjo, “Reduction of Almost Poisson Brackets for Nonholonomic Systems on Lie Groups”, Regul. Chaotic Dyn., 12:4 (2007), 365–388
Citation in format AMSBIB
\Bibitem{Gar07}
\by L.~C.~Garc{\'\i}a-Naranjo
\paper Reduction of Almost Poisson Brackets for Nonholonomic Systems on Lie Groups
\jour Regul. Chaotic Dyn.
\yr 2007
\vol 12
\issue 4
\pages 365--388
\mathnet{http://mi.mathnet.ru/rcd629}
\crossref{https://doi.org/10.1134/S1560354707040028}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2350330}
\zmath{https://zbmath.org/?q=an:1229.37088}
Linking options:
  • https://www.mathnet.ru/eng/rcd629
  • https://www.mathnet.ru/eng/rcd/v12/i4/p365
  • This publication is cited in the following 14 articles:
    1. Luis C. García-Naranjo, Juan C. Marrero, David Martín de Diego, Paolo E. Petit Valdés, “Almost-Poisson Brackets for Nonholonomic Systems with Gyroscopic Terms and Hamiltonisation”, J Nonlinear Sci, 34:6 (2024)  crossref
    2. Marco Dalla Via, Francesco Fassò, Nicola Sansonetto, “On the Dynamics of a Heavy Symmetric Ball that Rolls Without Sliding on a Uniformly Rotating Surface of Revolution”, J Nonlinear Sci, 32:6 (2022)  crossref
    3. Dong Eui Chang, Matthew Perlmutter, “Feedback Integrators for Nonholonomic Mechanical Systems”, J Nonlinear Sci, 29:3 (2019), 1165  crossref
    4. Luis C. García-Naranjo, James Montaldi, “Gauge Momenta as Casimir Functions of Nonholonomic Systems”, Arch Rational Mech Anal, 228:2 (2018), 563  crossref
    5. Francesco Fassò, Luis C García-Naranjo, Nicola Sansonetto, “Moving energies as first integrals of nonholonomic systems with affine constraints”, Nonlinearity, 31:3 (2018), 755  crossref
    6. Andrey V. Tsiganov, “Bäcklund Transformations for the Nonholonomic Veselova System”, Regul. Chaotic Dyn., 22:2 (2017), 163–179  mathnet  crossref
    7. A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Geometrisation of Chaplygin's reducing multiplier theorem”, Nonlinearity, 28:7 (2015), 2307–2318  mathnet  crossref  isi  scopus
    8. A. V. Borisov, I. S. Mamaev, “Simmetrii i reduktsiya v negolonomnoi mekhanike”, Nelineinaya dinam., 11:4 (2015), 763–823  mathnet
    9. Alexey V. Borisov, Ivan S. Mamaev, “Symmetries and Reduction in Nonholonomic Mechanics”, Regul. Chaotic Dyn., 20:5 (2015), 553–604  mathnet  crossref  mathscinet  zmath
    10. Luis C. García-Naranjo, Joris Vankerschaver, “Nonholonomic LL systems on central extensions and the hydrodynamic Chaplygin sleigh with circulation”, Journal of Geometry and Physics, 73 (2013), 56  crossref
    11. Paula Balseiro, Luis C. García-Naranjo, “Gauge Transformations, Twisted Poisson Brackets and Hamiltonization of Nonholonomic Systems”, Arch Rational Mech Anal, 205:1 (2012), 267  crossref
    12. O. E. Fernandez, T. Mestdag, A. M. Bloch, “A generalization of Chaplygin’s Reducibility Theorem”, Regul. Chaotic Dyn., 14:6 (2009), 635–655  mathnet  crossref
    13. YongXin Guo, Chang Liu, ShiXing Liu, Peng Chang, “Decomposition of almost Poisson structure of non-self-adjoint dynamical systems”, Sci. China Ser. E-Technol. Sci., 52:3 (2009), 761  crossref
    14. A. V. Borisov, I. S. Mamaev, “Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:115
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025