Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2008, Volume 13, Issue 3, Pages 191–203
DOI: https://doi.org/10.1134/S1560354708030052
(Mi rcd570)
 

This article is cited in 12 scientific papers (total in 12 papers)

The Poisson Bracket Compatible with the Classical Reflection Equation Algebra

A. V. Tsiganov

V. A. Fock Institute of Physics, St. Petersburg State University, Petrodvorets, ul. Ulyanovskaya 1, St. Petersburg, 198504 Russia
Citations (12)
Abstract: We introduce a family of compatible Poisson brackets on the space of $2 \times 2$ polynomial matrices, which contains the reflection equation algebra bracket. Then we use it to derive a multi-Hamiltonian structure for a set of integrable systems that includes the $XXX$ Heisenberg magnet with boundary conditions, the generalized Toda lattices and the Kowalevski top.
Keywords: Poisson bracket, bi-hamiltonian structure, reflection equation algebra.
Received: 07.09.2007
Accepted: 08.05.2008
Bibliographic databases:
Document Type: Article
MSC: 70H20, 70H06, 37K10
Language: English
Citation: A. V. Tsiganov, “The Poisson Bracket Compatible with the Classical Reflection Equation Algebra”, Regul. Chaotic Dyn., 13:3 (2008), 191–203
Citation in format AMSBIB
\Bibitem{Tsi08}
\by A.~V.~Tsiganov
\paper The Poisson Bracket Compatible with the Classical Reflection Equation Algebra
\jour Regul. Chaotic Dyn.
\yr 2008
\vol 13
\issue 3
\pages 191--203
\mathnet{http://mi.mathnet.ru/rcd570}
\crossref{https://doi.org/10.1134/S1560354708030052}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2415373}
\zmath{https://zbmath.org/?q=an:1229.70061}
Linking options:
  • https://www.mathnet.ru/eng/rcd570
  • https://www.mathnet.ru/eng/rcd/v13/i3/p191
  • This publication is cited in the following 12 articles:
    1. A. V. Tsiganov, “On bi-Integrable Natural Hamiltonian Systems on Riemannian Manifolds”, JNMP, 18:2 (2021), 245  crossref
    2. A. V. Vershilov, Yu. A. Grigorev, A. V. Tsyganov, “Ob odnoi integriruemoi deformatsii volchka Kovalevskoi”, Nelineinaya dinam., 10:2 (2014), 223–236  mathnet
    3. A V Tsiganov, “On natural Poisson bivectors on the sphere”, J. Phys. A: Math. Theor., 44:10 (2011), 105203  crossref
    4. A. V. Tsiganov, “On the generalized Chaplygin system”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 21, Zap. nauchn. sem. POMI, 374, POMI, SPb., 2010, 250–267  mathnet
    5. A. V. Tsyganov, “O novom razdelenii peremennykh dlya chastnogo sluchaya volchka Kovalevskoi”, Nelineinaya dinam., 6:3 (2010), 639–652  mathnet
    6. A. V. Tsiganov, “New variables of separation for particular case of the Kowalevski top”, Regul. Chaotic Dyn., 15:6 (2010), 659–669  mathnet  crossref
    7. A. V. Vershilov, “On the bi-Hamiltonian structure of Bogoyavlensky system on $so(4)$”, Regul. Chaotic Dyn., 15:6 (2010), 670–676  mathnet  crossref
    8. A. V. Tsiganov, “On the generalized Chaplygin system”, J Math Sci, 168:6 (2010), 901  crossref
    9. A V Vershilov, A V Tsiganov, “On bi-Hamiltonian geometry of some integrable systems on the sphere with cubic integral of motion”, J. Phys. A: Math. Theor., 42:10 (2009), 105203  crossref
    10. A. V. Tsiganov, “Change of the time for the periodic Toda lattices and natural systems on the plane with higher order integrals of motion”, Regul. Chaotic Dyn., 14:4 (2009), 541–549  mathnet  crossref
    11. A.V. Tsiganov, “On bi-hamiltonian structure of some integrable systems”, JNMP, 15:2 (2008), 171  crossref
    12. A. V. Tsiganov, “On Maximally Superintegrable Systems”, Regul. Chaotic Dyn., 13:3 (2008), 178–190  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:110
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025