Loading [MathJax]/jax/output/CommonHTML/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2012, Volume 17, Issue 5, Pages 371–384
DOI: https://doi.org/10.1134/S1560354712050012
(Mi rcd409)
 

This article is cited in 12 scientific papers (total in 12 papers)

Point Vortices and Classical Orthogonal Polynomials

Maria V. Demina, Nikolai A. Kudryashov

Department of Applied Mathematics, National Research Nuclear University “MEPhI”, 31 Kashirskoe Shosse, 115409 Moscow, Russian Federation
Citations (12)
Abstract: Stationary equilibria of point vortices in the plane and on the cylinder in the presence of a background flow are studied. Vortex systems with an arbitrary choice of circulations are considered. Differential equations satisfied by generating polynomials of vortex configurations are derived. It is shown that these equations can be reduced to a single one. It is found that polynomials that are Wronskians of classical orthogonal polynomials solve the latter equation. As a consequence vortex equilibria at a certain choice of background flows can be described with the help of Wronskians of classical orthogonal polynomials.
Keywords: point vortices, special polynomials, classical orthogonal polynomials.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation P1228
This research was partially supported by the Federal Target Programm “Research and Scientific–Pedagogical Personnel of Innovation in the Russian Federation for 2009–2013” (Contract P1228).
Received: 24.04.2012
Accepted: 16.06.2012
Bibliographic databases:
Document Type: Article
MSC: 33D45+76M23
Language: English
Citation: Maria V. Demina, Nikolai A. Kudryashov, “Point Vortices and Classical Orthogonal Polynomials”, Regul. Chaotic Dyn., 17:5 (2012), 371–384
Citation in format AMSBIB
\Bibitem{DemKud12}
\by Maria V. Demina, Nikolai A. Kudryashov
\paper Point Vortices and Classical Orthogonal Polynomials
\jour Regul. Chaotic Dyn.
\yr 2012
\vol 17
\issue 5
\pages 371--384
\mathnet{http://mi.mathnet.ru/rcd409}
\crossref{https://doi.org/10.1134/S1560354712050012}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2989511}
\zmath{https://zbmath.org/?q=an:1257.33048}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012RCD....17..371D}
Linking options:
  • https://www.mathnet.ru/eng/rcd409
  • https://www.mathnet.ru/eng/rcd/v17/i5/p371
  • This publication is cited in the following 12 articles:
    1. Pavel Kostenetskiy, Vyacheslav Kozyrev, Roman Chulkevich, Alina Raimova, Communications in Computer and Information Science, 2241, Parallel Computational Technologies, 2024, 49  crossref
    2. A. Vishnevskaya, M. V. Demina, “Negative Pell Equation and Stationary Configurations of Point Vortices on the Plane”, Math. Notes, 114:1 (2023), 46–54  mathnet  crossref  crossref  mathscinet
    3. Andrei Martínez-Finkelshtein, Ramón Orive, Joaquín Sánchez-Lara, “Electrostatic Partners and Zeros of Orthogonal and Multiple Orthogonal Polynomials”, Constr Approx, 58:2 (2023), 271  crossref
    4. Kudryashov N.A., “Generalized Hermite Polynomials For the Burgers Hierarchy and Point Vortices”, Chaos Solitons Fractals, 151 (2021), 111256  crossref  mathscinet  isi  scopus
    5. Dariya V. Safonova, Maria V. Demina, Nikolai A. Kudryashov, “Stationary Configurations of Point Vortices on a Cylinder”, Regul. Chaotic Dyn., 23:5 (2018), 569–579  mathnet  crossref
    6. M V Demina, N A Kudryashov, J E Semenova, “Point vortices in the plane: positive-dimensional configurations”, J. Phys.: Conf. Ser., 937 (2017), 012009  crossref
    7. Maria V. Demina, Nikolai A. Kudryashov, “Multi-particle Dynamical Systems and Polynomials”, Regul. Chaotic Dyn., 21:3 (2016), 351–366  mathnet  crossref  mathscinet
    8. K V S SHIV CHAITANYA, S SREE RANJANI, PRASANTA K PANIGRAHI, R RADHAKRISHNAN, V SRINIVASAN, “Exceptional polynomials and SUSY quantum mechanics”, Pramana - J Phys, 85:1 (2015), 53  crossref
    9. Anna M Barry, F Hajir, P G Kevrekidis, “Generating functions, polynomials and vortices with alternating signs in Bose–Einstein condensates”, J. Phys. A: Math. Theor., 48:15 (2015), 155205  crossref
    10. Nikolay A. Kudryashov, “Higher Painlevé Transcendents as Special Solutions of Some Nonlinear Integrable Hierarchies”, Regul. Chaotic Dyn., 19:1 (2014), 48–63  mathnet  crossref  mathscinet  zmath
    11. M. V. Demina, N. A. Kudryashov, “Rotation, collapse, and scattering of point vortices”, Theor. Comput. Fluid Dyn., 28:3 (2014), 357  crossref
    12. Maria V. Demina, Nikolai A. Kudryashov, “Relative Equilibrium Configurations of Point Vortices on a Sphere”, Regul. Chaotic Dyn., 18:4 (2013), 344–355  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:167
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025