Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2017, Volume 22, Issue 8, Pages 893–908
DOI: https://doi.org/10.1134/S1560354717080019
(Mi rcd298)
 

This article is cited in 10 scientific papers (total in 10 papers)

Dynamics of Two Point Vortices in an External Compressible Shear Flow

Evgeny V. Vetchanina, Ivan S. Mamaevab

a Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
b Izhevsk State Technical University, ul. Studencheskaya 7, Izhevsk, 426069 Russia
Citations (10)
References:
Abstract: This paper is concerned with a system of equations that describes the motion of two point vortices in a flow possessing constant uniform vorticity and perturbed by an acoustic wave. The system is shown to have both regular and chaotic regimes of motion. In addition, simple and chaotic attractors are found in the system. Attention is given to bifurcations of fixed points of a Poincaré map which lead to the appearance of these regimes. It is shown that, in the case where the total vortex strength changes, the “reversible pitch-fork” bifurcation is a typical scenario of emergence of asymptotically stable fixed and periodic points. As a result of this bifurcation, a saddle point, a stable and an unstable point of the same period emerge from an elliptic point of some period. By constructing and analyzing charts of dynamical regimes and bifurcation diagrams we show that a cascade of period-doubling bifurcations is a typical scenario of transition to chaos in the system under consideration.
Keywords: point vortices, shear flow, perturbation by an acoustic wave, bifurcations, reversible pitch-fork, period doubling.
Funding agency Grant number
Russian Science Foundation 15-12-20035
Ministry of Education and Science of the Russian Federation 1.2405.2017/4.6
Russian Foundation for Basic Research 15-38-20879 mol_a_ved
The work of E.V.Vetchanin (Sections 4, 5 and 6) was supported by RSF grant № 15-12-20035. The work of I.S.Mamaev (Introduction and Sections 1, 2 and 3) was carried out within the framework of the state assignment of the Ministry of Education and Science of Russia (1.2405.2017/4.6) and supported by RFBR grant № 15-38-20879 mol_a_ved.
Received: 12.12.2016
Accepted: 09.10.2017
Bibliographic databases:
Document Type: Article
MSC: 76B47
Language: English
Citation: Evgeny V. Vetchanin, Ivan S. Mamaev, “Dynamics of Two Point Vortices in an External Compressible Shear Flow”, Regul. Chaotic Dyn., 22:8 (2017), 893–908
Citation in format AMSBIB
\Bibitem{VetMam17}
\by Evgeny V. Vetchanin, Ivan S. Mamaev
\paper Dynamics of Two Point Vortices in an External Compressible Shear Flow
\jour Regul. Chaotic Dyn.
\yr 2017
\vol 22
\issue 8
\pages 893--908
\mathnet{http://mi.mathnet.ru/rcd298}
\crossref{https://doi.org/10.1134/S1560354717080019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000425981500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042480563}
Linking options:
  • https://www.mathnet.ru/eng/rcd298
  • https://www.mathnet.ru/eng/rcd/v22/i8/p893
  • This publication is cited in the following 10 articles:
    1. Elizaveta M. Artemova, Evgeny V. Vetchanin, “The Motion of an Unbalanced Circular Disk in the Field of a Point Source”, Regul. Chaotic Dyn., 27:1 (2022), 24–42  mathnet  crossref  mathscinet
    2. E. M. Artemova, E. V. Vetchanin, “Control of the motion of a circular cylinder in an ideal fluid using a source”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 30:4 (2020), 604–617  mathnet  crossref
    3. S. P. Kuznetsov, V. P. Kruglov, A. V. Borisov, “Chaplygin sleigh in the quadratic potential field”, EPL, 132:2 (2020), 20008  crossref  isi  scopus
    4. V. Chigarev, A. Kazakov, A. Pikovsky, “Kantorovich-Rubinstein-Wasserstein distance between overlapping attractor and repeller”, Chaos, 30:7 (2020)  crossref  mathscinet  zmath  isi  scopus
    5. A. Kazakov, “Merger of a Henon-like attractor with a Henon-like repeller in a model of vortex dynamics”, Chaos, 30:1 (2020), 011105  crossref  mathscinet  zmath  isi  scopus
    6. Vyacheslav P. Kruglov, Sergey P. Kuznetsov, “Topaj – Pikovsky Involution in the Hamiltonian Lattice of Locally Coupled Oscillators”, Regul. Chaotic Dyn., 24:6 (2019), 725–738  mathnet  crossref  mathscinet
    7. Alexey V. Borisov, Ivan S. Mamaev, Eugeny V. Vetchanin, “Dynamics of a Smooth Profile in a Medium with Friction in the Presence of Parametric Excitation”, Regul. Chaotic Dyn., 23:4 (2018), 480–502  mathnet  crossref  mathscinet
    8. Alexey V. Borisov, Ivan S. Mamaev, Ivan A. Bizyaev, “Three Vortices in Spaces of Constant Curvature: Reduction, Poisson Geometry, and Stability”, Regul. Chaotic Dyn., 23:5 (2018), 613–636  mathnet  crossref
    9. Alexey V. Borisov, Ivan S. Mamaev, Evgeny V. Vetchanin, “Self-propulsion of a Smooth Body in a Viscous Fluid Under Periodic Oscillations of a Rotor and Circulation”, Regul. Chaotic Dyn., 23:7-8 (2018), 850–874  mathnet  crossref
    10. Ivan S. Mamaev, Evgeny V. Vetchanin, “The Self-propulsion of a Foil with a Sharp Edge in a Viscous Fluid Under the Action of a Periodically Oscillating Rotor”, Regul. Chaotic Dyn., 23:7-8 (2018), 875–886  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:242
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025