Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2015, Volume 20, Issue 4, Pages 449–462
DOI: https://doi.org/10.1134/S1560354715040048
(Mi rcd25)
 

This article is cited in 23 scientific papers (total in 23 papers)

Conservation of Energy and Momenta in Nonholonomic Systems with Affine Constraints

Francesco Fassò, Nicola Sansonetto

Università di Padova, Dipartimento di Matematica, Via Trieste 63, 35121 Padova, Italy
Citations (23)
References:
Abstract: We characterize the conditions for the conservation of the energy and of the components of the momentum maps of lifted actions, and of their "gauge-like" generalizations, in time-independent nonholonomic mechanical systems with affine constraints. These conditions involve geometrical and mechanical properties of the system, and are codified in the so-called reaction-annihilator distribution.
Keywords: nonholonomic mechanical systems, conservation of energy, reaction-annihilator distribution, gauge momenta, nonholonomic Noether theorem.
Received: 05.05.2015
Bibliographic databases:
Document Type: Article
Language: English
Citation: Francesco Fassò, Nicola Sansonetto, “Conservation of Energy and Momenta in Nonholonomic Systems with Affine Constraints”, Regul. Chaotic Dyn., 20:4 (2015), 449–462
Citation in format AMSBIB
\Bibitem{FasSan15}
\by Francesco Fass\`o, Nicola Sansonetto
\paper Conservation of Energy and Momenta in Nonholonomic Systems with Affine Constraints
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 4
\pages 449--462
\mathnet{http://mi.mathnet.ru/rcd25}
\crossref{https://doi.org/10.1134/S1560354715040048}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3376601}
\zmath{https://zbmath.org/?q=an:06507835}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015RCD....20..449F}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000358990500004}
\elib{https://elibrary.ru/item.asp?id=24413155}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938559910}
Linking options:
  • https://www.mathnet.ru/eng/rcd25
  • https://www.mathnet.ru/eng/rcd/v20/i4/p449
  • This publication is cited in the following 23 articles:
    1. Mariana Costa-Villegas, Luis C. García-Naranjo, “Affine Generalizations of the Nonholonomic Problem of a Convex Body Rolling without Slipping on the Plane”, Regul. Chaot. Dyn., 2025  crossref
    2. Federico Talamucci, “Nonlinear nonholonomic systems: a simple approach and various examples”, Meccanica, 59:3 (2024), 333  crossref
    3. Efstratios Stratoglou, Alexandre Anahory Simoes, Anthony Bloch, Leonardo Colombo, Lecture Notes in Computer Science, 14072, Geometric Science of Information, 2023, 89  crossref
    4. Fabio Sozio, Arash Yavari, “A Geometric Field Theory of Dislocation Mechanics”, J Nonlinear Sci, 33:5 (2023)  crossref
    5. Francesco Fassò, Nicola Sansonetto, “On Some Aspects of the Dynamics of a Ball in a Rotating Surface of Revolution and of the Kasamawashi Art”, Regul. Chaotic Dyn., 27:4 (2022), 409–423  mathnet  crossref  mathscinet
    6. S. Hajdú, T. Mestdag, “Nonlinear splittings on fibre bundles”, Anal.Math.Phys., 12:1 (2022)  crossref
    7. Jesus E. Pacheco-Villegas, Vicente Parra-Vega, Anand E. Sanchez-Orta, 2022 19th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 2022, 1  crossref
    8. Marco Dalla Via, Francesco Fassò, Nicola Sansonetto, “On the Dynamics of a Heavy Symmetric Ball that Rolls Without Sliding on a Uniformly Rotating Surface of Revolution”, J Nonlinear Sci, 32:6 (2022)  crossref
    9. T. B. Ivanova, “Non-holonomic rolling of a ball on the surface of a rotating cylinder”, ZAMM-Z. Angew. Math. Mech., 100:12 (2020), e202000067  crossref  mathscinet  isi  scopus
    10. A. V. Tsiganov, “On a time-dependent nonholonomic oscillator”, Russ. J. Math. Phys., 27:3 (2020), 399–409  crossref  mathscinet  zmath  isi  scopus
    11. Yan Gao, 5TH INTERNATIONAL CONFERENCE ON ENERGY SCIENCE AND APPLIED TECHNOLOGY (ESAT 2019), 2238, 5TH INTERNATIONAL CONFERENCE ON ENERGY SCIENCE AND APPLIED TECHNOLOGY (ESAT 2019), 2020, 020004  crossref
    12. F. Fasso, L. C. Garcia-Naranjo, N. Sansonetto, “Moving energies as first integrals of nonholonomic systems with affine constraints”, Nonlinearity, 31:3 (2018), 755–782  crossref  mathscinet  zmath  isi  scopus
    13. I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Dynamics of the Chaplygin ball on a rotating plane”, Russ. J. Math. Phys., 25:4 (2018), 423–433  crossref  mathscinet  zmath  isi  scopus
    14. B. Jovanovic, “Symmetries of line bundles and noether theorem for time-dependent nonholonomic systems”, J. Geom. Mech., 10:2 (2018), 173–187  crossref  mathscinet  zmath  isi  scopus
    15. A. V. Borisov, I. S. Mamaev, “Neodnorodnye sani Chaplygina”, Nelineinaya dinam., 13:4 (2017), 625–639  mathnet  crossref  mathscinet  elib
    16. R. Chhabra, M. R. Emami, Ya. Karshon, “Reduction of Hamiltonian mechanical systems with affine constraints: a geometric unification”, J. Comput. Nonlinear Dyn., 12:2, SI (2017), 021007  crossref  isi  scopus
    17. Alexey V. Borisov, Ivan S. Mamaev, “An Inhomogeneous Chaplygin Sleigh”, Regul. Chaotic Dyn., 22:4 (2017), 435–447  mathnet  crossref  mathscinet
    18. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “The Hojman Construction and Hamiltonization of Nonholonomic Systems”, SIGMA, 12 (2016), 012, 19 pp.  mathnet  crossref
    19. Yury A. Grigoryev, Alexey P. Sozonov, Andrey V. Tsiganov, “Integrability of Nonholonomic Heisenberg Type Systems”, SIGMA, 12 (2016), 112, 14 pp.  mathnet  crossref
    20. Alexey V. Borisov, Alexey O. Kazakov, Igor R. Sataev, “Spiral Chaos in the Nonholonomic Model of a Chaplygin Top”, Regul. Chaotic Dyn., 21:7-8 (2016), 939–954  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:242
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025