Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2017, Volume 22, Issue 1, Pages 27–53
DOI: https://doi.org/10.1134/S1560354717010038
(Mi rcd242)
 

This article is cited in 6 scientific papers (total in 6 papers)

Degenerate Billiards in Celestial Mechanics

Sergey V. Bolotinab

a University of Wisconsin-Madison, 480 Lincoln Dr., Madison, WI 53706-1325, USA
b V.A. Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Citations (6)
References:
Abstract: In an ordinary billiard trajectories of a Hamiltonian system are elastically reflected after a collision with a hypersurface (scatterer). If the scatterer is a submanifold of codimension more than one, we say that the billiard is degenerate. Degenerate billiards appear as limits of systems with singularities in celestial mechanics. We prove the existence of trajectories of such systems shadowing trajectories of the corresponding degenerate billiards. This research is motivated by the problem of second species solutions of Poincaré.
Keywords: Hamiltonian system, billiard, celestial mechanics, collision, regularization, shadowing, action functional.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-03747a
Supported by the RFBR grant of the Russian Academy of Sciences “Modern problems of classical dynamics” (project 15-01-03747a).
Received: 29.11.2016
Accepted: 06.12.2016
Bibliographic databases:
Document Type: Article
Language: English
Citation: Sergey V. Bolotin, “Degenerate Billiards in Celestial Mechanics”, Regul. Chaotic Dyn., 22:1 (2017), 27–53
Citation in format AMSBIB
\Bibitem{Bol17}
\by Sergey V. Bolotin
\paper Degenerate Billiards in Celestial Mechanics
\jour Regul. Chaotic Dyn.
\yr 2017
\vol 22
\issue 1
\pages 27--53
\mathnet{http://mi.mathnet.ru/rcd242}
\crossref{https://doi.org/10.1134/S1560354717010038}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3607640}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000394354800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85012117692}
Linking options:
  • https://www.mathnet.ru/eng/rcd242
  • https://www.mathnet.ru/eng/rcd/v22/i1/p27
  • This publication is cited in the following 6 articles:
    1. Irene De Blasi, “Analytical methods in celestial mechanics: satellites' stability and galactic billiards”, Astrophys Space Sci, 369:5 (2024)  crossref
    2. Peter Albers, Serge Tabachnikov, “Monotone twist maps and Dowker-type theorems”, Pacific J. Math., 330:1 (2024), 1  crossref
    3. REGINALDO BRAZ BATISTA, MÁRIO JORGE DIAS CARNEIRO, SYLVIE OLIFFSON KAMPHORST, “Hyperbolicity and abundance of elliptical islands in annular billiards”, Ergod. Th. Dynam. Sys., 43:11 (2023), 3545  crossref
    4. Vivina L Barutello, Irene De Blasi, Susanna Terracini, “Chaotic dynamics in refraction galactic billiards”, Nonlinearity, 36:8 (2023), 4209  crossref
    5. Sean Gasiorek, “Counting Collisions in an $N$-Billiard System Using Angles Between Collision Subspaces”, SIGMA, 16 (2020), 119, 13 pp.  mathnet  crossref
    6. M. Bialy, A. E. Mironov, S. Tabachnikov, “Wire billiards, the first steps”, Adv. Math., 368 (2020), 107154  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:286
    Full-text PDF :1
    References:54
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025